
Computer System Design Lab 1

Ch 5.5 Synchronization

David Andrews

CSCE 4213 Computer Architecture

Computer System Design Lab 22

Gaining Perspective
• First Consider Programming Model

• What Does Synchronization Look Like to Programmer ?

• Operating System + Architecture Support
• Machine Provides Basic Low Level Primitives

– Combination of ISA + Cache Protocol

• Operating System Abstracts into Callable API
– Ties Scheduling into the Mix

Computer System Design Lab 33

Synchronization Basics
• Build With User-Level Software Routines

• Policy Given by API
• Mechanism within library routine

• Two Flavors, Shared Memory and Message Passing
• Shared Memory Synchronization Through Semaphores

– Mutex := Simple Binary Semaphore {0,1}
– pthread_mutex_lock(mutex)

– Will allow thread to continue if M[mutex] = 0;
• Will also set M[mutex] = 1; (show locked)

– Will block calling thread if M[mutex] =1
– Pthread_mutex_release(mutex)

– Will set M[mutex] = 0
• Message Passing

– int MPI_Send(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm
)

Computer System Design Lab 44

Programmers Perspective
• Mutex is "mutual exclusion".
• A mutex variable acts like a "lock" protecting access to a shared data

resource.
• Only one thread can lock (or own) a mutex variable at any given time. No other thread can own

that mutex until the owning thread unlocks that mutex. Threads must "take turns" accessing
protected data.

• Mutexes can be used to prevent "race" conditions.
• An example of a race condition involving a bank transaction is shown below:

Thread 1 Thread 2 Balance
Read balance: $1000 $1,000

Read Balance: $1,000 $1,000
$1,000

Deposit $200 $1,000
Update Balance
$1000 + $200 = $1,200

$1,200

Update Balance
$1000 + $200 = $1,200

$1,200

Computer System Design Lab 55

Using the mutex
Thread1(){

Pthread_mutex_lock(&gate)

Read Balance
Balance += deposit

Pthread_mutex_unlock(&gate)

Thread2(){

Pthread_mutex_lock(&gate)

Read Balance
Balance += deposit

Pthread_mutex_unlock(&gate)

Critical Region

Computer System Design Lab 66

Using the mutex
Thread1(){

Pthread_mutex_lock(&gate)

Read Balance
Balance += deposit

Pthread_mutex_unlock(&gate)

Thread2(){

Pthread_mutex_lock(&gate)

Read Balance
Balance += deposit

Pthread_mutex_unlock(&gate)

Critical Region

“Atomic” operation

Computer System Design Lab 77

Problem for Multiprocessors if non-atomic

gate

Memory

PE1 PE2

Again: Ld R1, gate

0

0

Pthread_mutex_lock(&gate) Pthread_mutex_lock(&gate)

Again: Ld R2, gateBne again
St “1”, gate Bne again

St “1”, gate

0 = Free!

t1
t2
t3
t4

Computer System Design Lab 88

Problem for Multiprocessors if non-atomic

gate

Memory

PE1 PE2

Again: Ld R1, gate

0

0

Pthread_mutex_lock(&gate) Pthread_mutex_lock(&gate)

Again: Ld R2, gateBne again
St “1”, gate Bne again

St “1”, gate

0 = Free!

t1
t2
t3
t4

0

Computer System Design Lab 99

Problem for Multiprocessors if non-atomic

gate

Memory

PE1 PE2

Again: Ld R1, gate

1

0

Pthread_mutex_lock(&gate) Pthread_mutex_lock(&gate)

Again: Ld R2, gateBne again
St “1”, gate Bne again

St “1”, gate

0 = Free!

t1
t2
t3
t4

0

1

Computer System Design Lab 1010

Problem for Multiprocessors if non-atomic

gate

Memory

PE1 PE2

Again: Ld R1, gate

1

0

Pthread_mutex_lock(&gate) Pthread_mutex_lock(&gate)

Again: Ld R2, gateBne again
St “1”, gate Bne again

St “1”, gate

0 = Free!

t1
t2
t3
t4

0
0

1
1

Computer System Design Lab 1111

Uninterruptible Instruction to Fetch/Update Memory

• Atomic exchange: interchange a value in a register for a value in
memory

0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
• Set a register to 1 & swap with memory value
• New value in register determines success in getting lock

 0 if you succeeded in getting the lock (you were first)
 1 if other processor had already claimed access

• Key is that exchange operation is indivisible
• Original Atomic Instructions:

• Test-and-set: tests a value and sets it if the value passes the test
• Fetch-and-increment: it returns the value of a memory location and atomically

increments it
• Guaranteed Atomicity by locking bus

– Very poor performance on a shared bus system

Computer System Design Lab 1212

Uninterruptible Instruction to
Fetch and Update Memory

• Modern Version := 2 instructions
• Load linked (or load locked) + store conditional

• Load linked returns the initial value
• Store conditional returns 1 if it succeeds (no other store to same memory location

since preceeding load) and 0 otherwise

LR X1,X2 {
 X1 <- Mem[X2] sem value from memory
 link_reg <- X2 put address into link reg
 Valid <- 1 set valid bit
}

SC X1,X2 {
 if(X2 == link_reg && valid == 1)
 Mem[X2] <- X1
 X1 <- 0
 else
 X1<- 1
}

Computer System Design Lab 1313

Architecture Support
LR X1, X3 LR X1, X3

SC X2, X3

SC X2 X3

@AX3 =

Computer System Design Lab 1414

Examples
• Example doing atomic swap with Lr & SC:
 try: mov X3, X4 ; mov exchange value

 lr X2, X1 ; load linked
 sc X3, X1 ; store conditional
 bneqz X3, try ; branch store fails , X3 = 1)
 mov X4, X2 ; put load value in , X4

• Example doing fetch & increment with Lr & SC:
 try: lr X2, , X1 ; load linked

 addi X2, X2, #1 ; increment (OK if reg–reg)
 sc X2, , X1 ; store conditional
 bneqz X2, try ; branch store fails (X2 = 1)

Computer System Design Lab 1515

Architecture Support
• Link Register Doesn’t Typically Sit on Bus

• That’s What the Cache is For !
• Ties into Snoopy Cache Lines to Monitor Address

• Snoopy Cache Also Eliminates Bus Saturation
• For Spin Locks, We Just Keep Trying…..

– First Load Linked Actually a Read Miss
– Address Stored in Both Cache and Link Register

• Address marked as shared in cache
– SC is Write

• If some one else read SC doesn’t actually happen (valid == 0)
• Subsequent LL reloads are read from cache
• If no-one else attempted to read then SC goes to Cache
• Now Marked as Exclusive
• Invalidates everyone else’s cache copy
• Subsequent reloads using LL cause new value to be written

back and cache will be updated with new
value

Computer System Design Lab 1616

Interesting Performance Issues

• Suppose 5 “threads” waiting for value to
change (release)
• Lock gets set back to “0” (in cache) What happens ?

– Exclusive in owner, invalidates in the 5 waiting
caches

– First requestor causes write back and update
– Second invalidated and re-reads 0
– Third requestor invalidated and re-reads 0
– Fourth requestor invalidated and re-reads 0
– Fifth requestor invalidated and re-reads 0
– Hmmm……hardly seems fair to be quick….

– Also, can cause poor performance through
starvation

• For these reasons, blocking semaphores are used
– Can control “release” order
– Also eliminates massive bus activity when

