Introduction

Moore's Law enabled:

- Deep memory hierarchy
- Wide SIMD units
- Deep pipelines
- Branch prediction
- Out-of-order execution
- Speculative prefetching
- Multithreading
- Multiprocessing

Whats the big deal?

Figure 1. The historical virtuous cycle of universal processers (a) is turning into a fragmentation cycle (b).

N. Thompson, S. Spanuth, Decline of Computers as a General Purpose Technology, Comm of the ACM March 2021

DSA Philosophy 101....

- Use dedicated memories to minimize data movement
- Invest resources into more arithmetic units or bigger memories
- Use the easiest form of parallelism that matches the domain
- Reduce data size and type to the simplest needed for the domain
- Use a domain-specific programming language

Examples from Textbook

Guideline	TPU	Catapult	Crest	Pixel Visual Core
Design target	Data center ASIC	Data center FPGA	Data center ASIC	PMD ASIC/SOC IP
1. Dedicated memories	24 MiB Unified Buffer, 4 MiB Accumulators	Varies	N.A.	Per core: 128 KiB line buffer, 64 KiB P.E. memory
2. Larger arithmetic unit	65,536 Multiply- accumulators	Varies	N.A.	Per core: 256 Multiply- accumulators (512 ALUs)
3. Easy parallelism	Single-threaded, SIMD, in-order	SIMD, MISD	N.A.	MPMD, SIMD, VLIW
 Smaller data size 	8-Bit, 16-bit integer	8-Bit, 16-bit integer 32-bit Fl. Pt.	21-bit Fl. Pt.	8-bit, 16-bit, 32-bit integer
5. Domain- specific lang.	TensorFlow	Verilog	TensorFlow	Halide/TensorFlow

Examples from Textbook

Guideline	TPU	Catapult	Crest	Pixel Visual Core
Design target	Data center ASIC	Data center FPGA	Data center ASIC	PMD ASIC/SOC IP
1. Dedicated memories	24 MiB Unified Buffer, 4 MiB Accumulators	Varies	N.A.	Per core: 128 KiB line buffer, 64 KiB P.E. memory
 Larger arithmetic unit 	65,536 Multiply- accumulators	Varies	N.A.	Per core: 256 Multiply- accumulators (512 ALUs)
3. Easy parallelism	Single-threaded, SIMD, in-order	SIMD, MISD	N.A.	MPMD, SIMD, VLIW
 Smaller data size 	8-Bit, 16-bit integer	8-Bit, 16-bit integer 32-bit Fl. Pt.	21-bit Fl. Pt.	8-bit, 16-bit, 32-bit integer
 Domain- specific lang. 	TensorFlow	Verilog	TensorFlow	Halide/TensorFlow

DNN's: Todays Driving Application

- Inpired by neuron of the brain
- Computes non-linear "activiation" function of the weighted sum of input values
- Neurons arranged in layers

Name	DNN layers	Weights	Operations/Weight
MLP0	5	20M	200
MLP1	4	5M	168
LSTM0	58	52M	64
LSTM1	56	34M	96
CNN0	16	8M	2888
CNNI	89	100M	1750

Multi-Layer Perceptrons

Computer System Design Lab

Multi-Layer Perceptrons

Parameters:

- Dim[i]: number of neurons ٠
- Dim[i-1]: dimension of input vector •
- Number of weights: Dim[i-1] x Dim[i]
- Operations: 2 x Dim[i-1] x Dim[i]
- Operations/weight: 2

Tensor Processing Unit

- Google's DNN ASIC
- 256 x 256 8-bit matrix multiply unit
- Large software-managed scratchpad
- Coprocessor on the PCIe bus

Computer System Design Lab

TPU ISA

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the accumulators
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory

Computer System Design Lab

TPU ISA

- Matrix Multiply Unit (MPU) is a heart of TPU.
 - It contains 256x256 MACs(Multiply ACcumulate unit).
 - · Performing 8-bit multiply and adds on signed or unsigned integers.
 - Output is 16-bit data.
 - 16-bit products are collected in the 4MiB of 32-bit accumulators.
 - The 4MiB represents 4096 node.
 - Each node has 256-element of 32-bit accumulators.
 - The matrix unit produces one 256-element partial sum per clock cycle
 - The matrix unit holds one 64KiB tile of weights plus one for double buffering. (To hide the 256 cycles it takes to shit a tile in)
 - Single weight is 8-Bit.

Structured as a Systolic Array

The TPU and the Guidelines

- Use dedicated memories
 - 24 MiB dedicated buffer, 4 MiB accumulator buffers
- Invest resources in arithmetic units and dedicated memories
 - 60% of the memory and 250X the arithmetic units of a serverclass CPU
- Use the easiest form of parallelism that matches the domain
 - Exploits 2D SIMD parallelism
- Reduce the data size and type needed for the domain
 - Primarily uses 8-bit integers
 - Use a domain-specific programming language
 - Uses TensorFlow