
Computer System Design Lab 1

Introduction
• Thread-Level parallelism

• Have multiple program counters
• Uses MIMD model
• Targeted for tightly-coupled shared-memory

multiprocessors

• For n processors, need n threads

• Amount of computation assigned to each
thread = grain size
• Threads can be used for data-level parallelism, but the

overheads may outweigh the benefit

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 2

Architectures
Symmetric multiprocessors (SMP)

• Small number of cores
• Share single memory with

uniform memory latency
• Uses Snoopy Cache Protocols

Distributed shared memory (DSM)
• Memory distributed among

processors
• Non-uniform memory

access/latency (NUMA)
• Processors connected via direct

(switched) and non-direct
(multi-hop) interconnection
networks

• Uses Directory Cache Protocol
Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 3

Cache Coherence

3

• Coherence
• All reads by any processor must return the most recently

written value
• Writes to the same location by any two processors are seen

in the same order by all processors

• Consistency
• When a written value will be returned by a read
• If a processor writes location A followed by location B, any

processor that sees the new value of B must also see the new
value of A

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 4

Enforcing Coherence

4

• Coherent caches provide:
• Migration: movement of data
• Replication: multiple copies of data

• Cache coherence protocols
• Directory based

– Sharing status of each block kept in one location
• Snooping

– Each core tracks sharing status of each block

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 5

Snoopy Cache Protocols

5

• Write invalidate
• On write, invalidate all other copies
• Use bus itself to serialize

– Write cannot complete until bus access is obtained

• Write update
• On write, update all copies

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 6

Snoopy Coherence Protocols
• Locating an item when a read miss occurs

• In write-back cache, the updated value must be sent to the
requesting processor

• Cache lines marked as shared or
exclusive/modified <- Caution: “modified” takes on
different meanings for different protocols
• Only writes to shared lines need an invalidate broadcast

– After this, the line is marked as exclusive

Common Snoopy Protocols
• MSI: Modified, Shared, Invalid
• MESI: Modified, +(Exclusive), Shared, Invalid
• MOESI: Mod, +(Owned), Exc. Shared, Invalid

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 7

Coherence Protocols

• Every multicore with >8 processors uses an
interconnect other than bus
• Makes it difficult to serialize events
• Write and upgrade misses are not atomic
• How can the processor know when all invalidates are

complete?
• How can we resolve races when two processors write at the

same time?
• Solution: associate each block with a single bus

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

Computer System Design Lab 8

Directory Based Protocols

• Snooping schemes require communication
among all caches on every cache miss
• Limits scalability
• Another approach: Use centralized directory to keep track

of every block
– Which caches have each block
– Dirty status of each block

• Implement in shared L3 cache
• Keep bit vector of size = # cores for each block in L3
• Not scalable beyond shared L3

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson

