Introduction

- Thr'ead Level parallelism
Have multiple program counters
+ Uses MIMD model

+ Targeted for tightly-coupled shared-memory
multiprocessors

For nprocessors, need »n threads

* Amount of computation assigned to each

thread = grain size

* Threads can be used for data-level parallelism, but the
overheads may outweigh the benefit

:c\ G
H omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson |

Architectures

ymmetric multiprocessors (SMP)
Small number of cores

Share single memory with
uniform memory latency

Uses Snoopy Cache Protocols

Distributed shared memory (DSM)
+ Memory distributed among

I
Processor

Q '@ '® @

One or
more levels
of cache

One or
more leve!

One or
more levels
of cache

of cache

Is

One or
more levels
of cache

Private
caches

Shared cache

Main memory I /O system '

p r'o Cesso r's ,'(m—l;:ore [Multicore { Multicore { Multicore
- Non-uniform memory L S N N
access/latency (NUMA) [) e () [)
+ Processors connected via dire [I)
(switched) and non-direct b
(multi-hop) interconnection [=)) wi

N
R

omputer System Design Lab

Memory t

\ MP

HQTWO r kS (MU,ISE;OW ’ { Multicore ’
txx Uses Directory Cache Protocc.

Memory l/»
(Multicore
MP

Memory l»
(Multicore
\ MP

Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson 2

Cache Coherence

Coherence

All reads by any processor must return the most recently
written value

Writes to the same location by any two processors are see
in the same order by all processors

Con3|s’rency

When a written value will be returned by a read

- If a processor writes location A followed by location B, any

processor that sees the new value of B must also see the ne
value of A

omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson B

Enforcing Coherence

* Coherent caches provide:
 Migration. movement of data
* Replication. multiple copies of data

* Cache coherence protocols
- Directory based
- Sharing status of each block kept in one location
- Shooping
- Each core tracks sharing status of each block

;c\ G
I;”I\I omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson Am_

Snoopy Cache Protocols

+ Write invalidate
+ On write, invalidate all other copies
+ Use bus itself to serialize
- Write cannot complete until bus access is obtained

Contents of processor Contents of processor Contents of memory
Processor activity Bus activity A's cache B's cache location X

0

Processor A reads X Cache miss 0
for X

Processor B reads X Cache miss 0
for X

Processor A writes a Invalidation 0
lto X for X

Processor B reads X Cache miss 1
for X

* Write update

» On write, update all copies

H omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson 5

Shoopy Coherence Protocols

+ Locating an item when a read miss occurs

* In write-back cache, the updated value must be sent to the
requesting processor

+ Cache lines marked as shared or
exclusive/ modified <- Caution: "modified” takes on

different meanings for different protocols
* Only writes to shared lines need an invalidate broadcast
- After this, the line is marked as exclusive

Common Snoopy Protocols
- MSI: Modified, Shared, Invalid
|+ MESI: Modified, +(Exclusive), Shared, Invali

9. MOEST: Mod, +(Owned), Exc. Shared, Invali
S gt |
|

omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson ¢

Coherence Protocols

» Every multicore with >8 processors uses an
inferconnect other than bus

* Makes it difficult to serialize events
* Wprite and upgrade misses are not atomic

» How can the processor know when all invalidates are
complete?

- How can we resolve races when two processors write at the
same time?

- Solution: associate each block with a single bus

:c\ G
H omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson 7]

Directory Based Protocols

* Snooping schemes require communication
among all caches on every cache miss
- Limits scalability

» Another approach: Use centralized directory to keep track
of every block

- Which caches have each block
- Dirty status of each block

* Implement in shared L3 cache

- Keep bit vector of size = # cores for each block in L3
* Not scalable beyond shared L3

:c\ G
H omputer System Design Lab Slides adapted from Comp. Arch A Quantitative Approach Hennessy and Patterson §

