Memory Hierarch Design

This week's Focus is on Memory
Hierarchies and Cache Fundamentals

omputer System Design Lab



Introduction

* Programmer Abstraction: Unlimited fast, flat memor}

Fast memory technology is more expensive per bit than slower
memory

Solution: organize memory system into a hierarchy

- Entire addressable memory space available in largest,
slowest memory

- Incrementally smaller and faster memories, each
containing a subset of the memory below it, proceed in
steps up toward the processor

»+ Temporal and spatial locality insures that nearly all
references can be found in smaller memories

+ Gives the allusion of a large, fast memory being presented tp
the processor

omputer System Design Lab
I ‘ P y 9 C4A Morgan Kaufmann Copyright @ 2019, Elsevier Inc. All rights Reserved 2



Achieving A Memory Hierarchy

+ Objective: Make System that:

* 1. Provides Bulk and Cost Close to Disk
- 2: Provides Performance of Registers/CPU

CPU

|Reglsters { I/O Devices '

Disk
Cache Memory Memory
Reference Reference Reference

Register Reference

Size: 500 bytes 64 Kbytes 512 Mbytes 100 Gbytes
Speed: 0.25ns 1ns 100 ns 5ms

Taken from Hennessey & Patterson Circa 2000

H omputer System Design Lab 33




Memory Hierarchy

CPU

Register Level 1 Level 2 Memory
reference Cache Cache reference
reference  reference

Size: 1000 bytes 64 KB 256 KB 1-2GB
Speed: 300 ps ins 5-10ns 50-100 ns

Memory hierarchy for a personal mobile device

- @

Flash
Register Level 1 Level 2 Level 3 Memory reference

reference Cache Cache Cache reference
reference reference  reference

Laptop Size: 1000 bytes 64 KB 256 KB 4-8MB 4-16 GB 256 GB-1TB
Speed: 300ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS

Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2 TB
Speed: 300ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 uS

CPU

L3
C

a

c

h

e

(B) Memory hierarchy for a laptop or a desktop

CPU /O bus

Memory

Flash storage

T ————
Register Level 1 Level 2 Level 3 Memory »
reference Cache Cache Cache reference Disk Flash

reference reference  reference memory  memory
reference reference

Size: 4000 bytes 64 KB 256 KB 16-64 MB 32-256 GB

5 16-64TB 1-16 TB
Spead: 200ps 1ns 3-10ns 10-20ns 50-100 ns 5-10ms 100-200 us

Memory hierarchy for server

uonoNpoU|



uonPNPOIU|

Memory Performance Gap

100,000

10,000 e e

TOO0 —rmmmmmmmm e e e e g e e e ieeeeeeesiessseseesieesseseseeeeseseees

Performance

TOO Frmmmmmmmmmm e e e et

10 -

I I I I | 1
1980 1985 1990 1995 2000 2005 2010 2015

Year




Agenda

The Domain of Cache's
Fundamental Level in Memory Hierarchy

Prevent Slowdowns of CPU
- Instruction Fetching
- Data Fetching

Why The Work

Locality of Reference
- Temporal
- Spatial
Baseline Cache Operation
Address Comparisons and Data Blocks (Lines)
Address Comparisons based on Tags

Common Organizations
Direct Mapped
- Simple but slowest

Fully Associative
- Most Complex and Fastest

Set Associative
- Close to Fully Associative Performance + Simplicity of Direct

omputer System Design Lab




Agenda (Continued)

- Cache Control

- Update Policies
- Write Back, Write Through

* Replacement Policies
- Selecting Which "Block" to Replace

c.“\.._‘:t_:"
H omputer System Design Lab

7 7



The Domain of Caches

* Why Were Caches Created ?

* Performance, Performance, Performance.....Any
Questions ?

- Consider This....

- We want RISC Scalar CPU to Input 1 Instruction per
Clock

- CPU Fetches Each Instruction From DRAM (Cheap

2.5 Ghz 25 Mhz
Main Memory 40 nsec
4 CPU
ns (DRAM)

I System Bus I
- >




Why Caches Work

* Principle of Locality:
Temporal: If you use an instruction/data item in the near past, then
you will probably use it again in the near future.
- Loops
- Variable re-use
Spatial: If you use an instruction/data item, then you will probably
use others close in address space
- Sequential Instruction Execution
- Data Arrays

»  Basic Operation:
CPU Issues Address

Cache Compares To Existing Addresses (Tag Compare)
- TIf hit, continue
- If miss, stop execution and pull in complete line

- Cache refill times can be considerable. Worsens with multi-level
caches. We won't consider refill times in our basic coverage today

” omputer System Design Lab




Big Picture Operation
* Cache is Based on SRAM (D-Flip Flops).

- Much Faster than DRAM Cache Memory

* Cache Memory is Limited

» Obviously, Map Multiple Locations From

Main Memory into Cache

* Question: How Do We Decide The Mapping ?

- Direct Mapped

- Fully Associative

- Set Associative

- Lets First Look At Cache Organization

N
N

S gt
H omputer System Design Lab 10 10



Direct Mapped Cache Organization

- Break Address Into 3 Parts

24 bit address UEG1ES hex
* BIOCk OffSeT 000 1110 0000 0001 1110 1001 binary
- Index
+ Tag:
Tag Index Block Offset
00 0111 0000 000D 1111 010 01
00 o1 10 11
Q00
Qo1
4
00 0111 0000 0000 1111[@—% o010
g1
100
101
110
:.‘f‘ ) .
N 't?.i" 111

H omputer System D
Tag Storage Data Storage



Sizing Analysis

» Direct Mapped Cache Sizing

- Given by Index x Block Size (in Bytes)
- Total Size = 2#index_bits yx 2 #block_offset_bits
- This Example = 23 x 22 = 25 = 32 bytes

* Note* Independent of Tag Size

- Does Cache Size Change for this Example for 32 bit
Address ?

How | 24 uit agd { PEOIEs hex
address 000 1110 0000 0001 1110 1001  binary

Tag Index Block Offset

00 0111 0000 0000 1111 010 01

" .‘\\ .‘-‘:t..'.
H omputer System Design Lab 12 12




Fully Associative Cache

* Tag Can 6o Anywhere: Better Utilization

7o

N
-
Y N

\--.w&.j
H omputer System Desig

OEQ1E9
24 bit address

hex

000 1110 0000 0001 1110 1001 binary

Tag Index

Block Offset

Direct Mapped (55 0111 0000 0000 1111“ 010

01

Tag

Block Offset

Fully Assoclative |opo111 00000000 1111 010

01

00 01

)

10 11

00d

001

IR |

100

00111 0000 0000 1111 D10
000111 00000000 1111 D 101

Tag Storage

Data Storage

13



Set Associative
+ 2-Way Set Associative

« M _ ", OEO1E9 hex
Way-ness” : 24 bitaddress 000 1110 0000 0001 1110 1001  binary
- = # Storage Locations Tag Index  Biock Offset
- = # Compar‘isons Direct Mapped 400111 0000 0000 1111f| 010 01

Tag Set  Block Offset

Set Assoclative 000111 00000000 1111 Q| 10 01
00 01 10
0 a0
o a1
™ 000111 00000000 1111 0 0 10
0 11
1 00
1 a1
! | 000111 00000000 1111 O i 10
1 11

i Data St
omputer System Design Lab Tag Storage ata Storage



2_
_(_B_e‘r’rer' Representation)

Way Set Associative Cache

Sets Formation as Grouped Blocks

N sets := N:1 Multiplexers

Wayness = # Multiplexe rag set  Block Offset
Wayness = H Compar‘iTo |ooo111 0000 0000 1111 ol 10 I 01 |

B

Tag Storage

s
'

| ;

omputer System Design Lab

Data Storage

15 15



4-Way Set Associative

Tag Set  Block Offset
4-Way Uses 4 Comparitors |oo 011100000000 1111 0 1 |0 01

Data Storage
00 01 10 "

2 Sets (In this Example) ] Tag Storage

4 Places to put a Block

4:1 Mux o] 411 MUX | #— 4:1 Mux | »| 4:1 Mux




A Little Comparison Between Organizations

 Direct, Full, and Set Associative are all
really the same

Associativity
N Lines

Comments

Direct

Set Ass.
M way

Full Ass.

s.“\;t:
H omputer System Design Lab

17 17



Measuring Performance

How We Measure Cache Performance:

Hit rate: Percentage of Accesses Issued by CPU Found in
Cache

H usually pretty high; say 96 - 99%

Average Access Time: The Average, or Effective Access
Time Using a Cache

Tacc = Tcache X h + Tmm(l'h)

Performance is Very Sensitive to Miss Rate ( 1- Hit Rate)
Consider ratio of 100:1 cycle time difference

““‘\,‘_w.t_:'
H omputer System Design Lab

18 18



Cache Misses and Size

Compulsary Misses: Assumes an infinite size cache. Compulary misses occur when a block is

first accessed.

Also called "Cold Start" misses

Capacity Misses: If cache cannot contain all blocks (program/data) needed, then misses occur
because blocks are discarded and then later retrieved. Measured as fully associative mapping

Conflict: Misses due to associativity constraints. No Conflict misses for Fully Associative.
Some for set associative and the most for direct mapped.

0.10
0.09
Miss 0.08
Rate 0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

3. { /

ﬁ

Capacity

Compulsary

4 8 16 32 64 128 256 512

Cache Size (KB)
H omputer sysiem vesign Lap

19 19



Effects of Associativity

» Does Associativity Effect Hit Rate ?
- You bet

» Simple Thought Game...

+ An Increase in Associativity Enables More Options on
Where an Instruction/Datum Can be Stored in Cache

- Will a Set Associative Cache Ever Perform Worse
than A Direct Mapped Cache ?

- Will a Fully Associative Cache Ever Perform Worse
than a Set Associative Cache ?

- Conflict Misses: Hit Rate Differences Between Levels
of Associativity.

““‘\_‘_w.t_:'
H omputer System Design Lab

20 20



(Slide from David Patterson)

0.14

Q

S\’;)‘ ? »way Conflict
B .

;0.08
50.06
.04
=
0.02

8-way
Capacity

ompulsory vanishingly Cache Size (KB) Compulsory
small

fiscanseg

omputer System Design Lab 21 21



2:1 Cache Rule (Slide from David Patterson)

miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2

0.14
o 1-way _
D.12 Conflict
— 2-way
v 0.1
o 4-way
L0.08 pd
+ 8-way
.06 IR |
* Capacity
v0.04
=

0.02

128

O
|
II|

EIE Cache Size (KB) Compulsory _, »




1. Reduce Misses via Larger Block Size
Slide from David Patterson

D50

20% //'

Miss | 070 frossmir o e

Rate 1006 Lo .
oo . . .

Y N —

I»—.- g ——mn ™

"

Block Size (bytes)

—* 1K

— 4K

—®— 16K
— % 64K
—®— 256K

23 23



Block Replacement

When a miss occurs and all blocks
(direct, set, full ?) are occupied, which
one do you replace ?

* Thought Experiment: What would ideal replacement
policy be ?
- Requires us to predict future

Realistic Policies
+ Random: Simply pick one

* Least Recently Used (LRU): Relies on the past to
predict the future. Don't replace a block that has
recently been used, replace block that has not been
used for the longest time.

* First In, First Out (FIFO): Simpler version of LRU.

omputer System Design Lab

24 24



What Happens on a Write ?

Write Back: Only Update the Cache, not Main Memory

Pro's
- Best Performer: All Accesses Occur At Cache Cycle Times
- Minimizes Updates to a Single Variable (summation etc.)

Con's
- Modest Increase in Complexity (A Dirty Bit)
- Must First "Flush” Back Dirty Line Before Replacement
- Inconsisent Memory State (Multiple Values in Cache and Main Memory Possible)

Write Through: Update Through Cache and Into Main Memory
Pro's
- Keeps Cache and Main Memory Consistent
- Important for Multiprocessors ?
- Line Refills Simple and Fast, No Need to Flush Stale Data
Con's

Writes Occur at Main Memory Speed, not Cache
- How Often Do We Write ?

” omputer System Design Lab 25 25



