
Computer System Design Lab 1

1

Memory Hierarch Design

This week’s Focus is on Memory
Hierarchies and Cache Fundamentals

Computer System Design Lab 2C&A Morgan Kaufmann Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction
• Programmer Abstraction: Unlimited fast, flat memory

• Fast memory technology is more expensive per bit than slower
memory

• Solution: organize memory system into a hierarchy
– Entire addressable memory space available in largest,

slowest memory
– Incrementally smaller and faster memories, each

containing a subset of the memory below it, proceed in
steps up toward the processor

• Temporal and spatial locality insures that nearly all
references can be found in smaller memories
• Gives the allusion of a large, fast memory being presented to

the processor

Computer System Design Lab 33

Achieving A Memory Hierarchy
• Objective: Make System that:

• 1: Provides Bulk and Cost Close to Disk
• 2: Provides Performance of Registers/CPU

Computer System Design Lab 4Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy

Introduction

Computer System Design Lab 5Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Performance Gap

Introduction

Computer System Design Lab 66

Agenda
• The Domain of Cache’s

• Fundamental Level in Memory Hierarchy
• Prevent Slowdowns of CPU

– Instruction Fetching
– Data Fetching

• Why The Work
• Locality of Reference

– Temporal
– Spatial

• Baseline Cache Operation
• Address Comparisons and Data Blocks (Lines)
• Address Comparisons based on Tags

• Common Organizations
• Direct Mapped

– Simple but slowest
• Fully Associative

– Most Complex and Fastest
• Set Associative

– Close to Fully Associative Performance + Simplicity of Direct

Computer System Design Lab 77

Agenda (Continued)
• Cache Control

• Update Policies
– Write Back, Write Through

• Replacement Policies
• Selecting Which “Block” to Replace

Computer System Design Lab 88

The Domain of Caches
• Why Were Caches Created ?

• Performance, Performance, Performance……Any
Questions ?

• Consider This….
• We want RISC Scalar CPU to Input 1 Instruction per

Clock
– CPU Fetches Each Instruction From DRAM (Cheap

but Dense Memory)
– but has to wait 40/.4 = 100 Clocks between

Accesses Due to Cycle Time
– DRAM Slow
– Bus Slow (Cycle Times + Arbitration not Even

Considered Here)
– CPU Pin Limited (Prevents Simultaneous Instruction

Fetch)

Computer System Design Lab 99

Why Caches Work
• Principle of Locality:

• Temporal: If you use an instruction/data item in the near past, then
you will probably use it again in the near future.

– Loops
– Variable re-use

• Spatial: If you use an instruction/data item, then you will probably
use others close in address space

– Sequential Instruction Execution
– Data Arrays

• Basic Operation:
• CPU Issues Address
• Cache Compares To Existing Addresses (Tag Compare)

– If hit, continue
– If miss, stop execution and pull in complete line

– Cache refill times can be considerable. Worsens with multi-level
caches. We won’t consider refill times in our basic coverage today

Computer System Design Lab 1010

Big Picture Operation
• Cache is Based on SRAM (D-Flip Flops).

• Much Faster than DRAM

• Cache Memory is Limited
• Obviously, Map Multiple Locations From

Main Memory into Cache
• Question: How Do We Decide The Mapping ?

– Direct Mapped
– Fully Associative
– Set Associative

• Lets First Look At Cache Organization

Computer System Design Lab 1111

Direct Mapped Cache Organization

• Break Address Into 3 Parts
• Block Offset
• Index
• Tag:

Computer System Design Lab 1212

Sizing Analysis
• Direct Mapped Cache Sizing

• Given by Index x Block Size (in Bytes)
– Total Size = 2#index_bits x 2 #block_offset_bits

– This Example = 23 x 22 = 25 = 32 bytes
• Note* Independent of Tag Size

– Does Cache Size Change for this Example for 32 bit
Address ?

• How Many Blocks Mapped into Common Line ?
– Does this change for 32 bit Address ?

Computer System Design Lab 1313

Fully Associative Cache
• Tag Can Go Anywhere: Better Utilization

Computer System Design Lab 1414

Set Associative
• 2-Way Set Associative

• “Way-ness” :
– = # Storage Locations
– = # Comparisons

Computer System Design Lab 1515

2-Way Set Associative Cache
(Better Representation)
• Sets Formation as Grouped Blocks
• N sets := N:1 Multiplexers
• Wayness = # Multiplexers
• Wayness = # Comparitors

Computer System Design Lab 1616

4-Way Set Associative
• 4-Way Uses 4 Comparitors
• 2 Sets (In this Example)
• 4 Places to put a Block

Computer System Design Lab 1717

A Little Comparison Between Organizations

• Direct, Full, and Set Associative are all
really the same

Associativity
N Lines

Way-
ness

#sets #
Muxes

Size of
Muxes

#
Comp

Comments

Direct 1 N 1 N:1 1

Set Ass.
M way

M N/M M N/M:1 M

Full Ass. N 1 N N:1 N

Computer System Design Lab 1818

Measuring Performance
How We Measure Cache Performance:

• Hit rate: Percentage of Accesses Issued by CPU Found in
Cache

• H usually pretty high; say 96 - 99%

• Average Access Time: The Average, or Effective Access
Time Using a Cache

• Tacc = tcache x h + tmm(1-h)

• Performance is Very Sensitive to Miss Rate (1- Hit Rate)
• Consider ratio of 100:1 cycle time difference

Computer System Design Lab 1919

Cache Misses and Size
• Compulsary Misses: Assumes an infinite size cache. Compulary misses occur when a block is

first accessed. Also called “Cold Start” misses
• Capacity Misses: If cache cannot contain all blocks (program/data) needed, then misses occur

because blocks are discarded and then later retrieved. Measured as fully associative mapping
• Conflict: Misses due to associativity constraints. No Conflict misses for Fully Associative.

Some for set associative and the most for direct mapped.

• Consider Graph for Fully Associative Cache (No Conflict Info in this Graph)

Computer System Design Lab 2020

Effects of Associativity
• Does Associativity Effect Hit Rate ?

• You bet…..

• Simple Thought Game…
• An Increase in Associativity Enables More Options on

Where an Instruction/Datum Can be Stored in Cache
– Will a Set Associative Cache Ever Perform Worse

than A Direct Mapped Cache ?
– Will a Fully Associative Cache Ever Perform Worse

than a Set Associative Cache ?
• Conflict Misses: Hit Rate Differences Between Levels

of Associativity.

Computer System Design Lab 2121

3Cs Absolute Miss Rate (SPEC92)
(Slide from David Patterson)

Compulsory vanishingly
small

Computer System Design Lab 2222

2:1 Cache Rule (Slide from David Patterson)

Computer System Design Lab 2323

1. Reduce Misses via Larger Block Size
Slide from David Patterson

Computer System Design Lab 2424

Block Replacement
• When a miss occurs and all blocks

(direct, set, full ?) are occupied, which
one do you replace ?
• Thought Experiment: What would ideal replacement

policy be ?
– Requires us to predict future

• Realistic Policies
• Random: Simply pick one
• Least Recently Used (LRU): Relies on the past to

predict the future. Don’t replace a block that has
recently been used, replace block that has not been
used for the longest time.

• First In, First Out (FIFO): Simpler version of LRU.

Computer System Design Lab 2525

What Happens on a Write ?
• Write Back: Only Update the Cache, not Main Memory

• Pro’s
– Best Performer: All Accesses Occur At Cache Cycle Times
– Minimizes Updates to a Single Variable (summation etc.)

• Con’s
– Modest Increase in Complexity (A Dirty Bit)
– Must First “Flush” Back Dirty Line Before Replacement
– Inconsisent Memory State (Multiple Values in Cache and Main Memory Possible)

• Write Through: Update Through Cache and Into Main Memory
• Pro’s

– Keeps Cache and Main Memory Consistent
– Important for Multiprocessors ?

– Line Refills Simple and Fast, No Need to Flush Stale Data
• Con’s
• Writes Occur at Main Memory Speed, not Cache

– How Often Do We Write ?

