
Top Level Design

o OBJECTIVE: Learn How to Develop A Top Level Design

o OBJECTIVE: Learn Key Information Necessary For Top Level Design

o OBJECTIVE: Learn How to Document Top Level Design



Top Level Design Block Diagram

o The Main Purpose of the Top Level Design Is the Where

o Make a List of the What and Find a Home For Each Requirement.
» Can Use a Matrix
» Modularize As Much As Possible.  We Will Define Functional 

Subsystems
o Define Interface Between the Subsystems

o After The Subsystems and Interfaces are Defined, We Will Develop 
The Derived Requirements.
» Assign Portions of Time Line, Size, Power etc to Each Subsystem



Make a List of the What and Find a Home For Each Requirement

Interfaces to Outside World  {Parallel and Serial Ports}
We will Create an I/O Subsystem Module for Interfaces

CPU
We Will Create A CPU Subsystem (Brains of System)

Memory
We Will Create a Memory Subsystem Module

Programs
Make Sure The Programs Are Accounted For 
Memory Map and Allocations (Enough Memory For Programs,Data)



Subsystems on Common Bus Organization
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Requirements/Subsystem Matrix

Requirements Matrix Maps Requirements Into Appropriate System

CPU Subsystem Memory Subsystem I/O Subsystem
Requirement
Current Position 2 8-bit Par. Inputs
Desired Position 2 8-bit Par. Inputs
Output Deltas 6,8-bit Par. Outputs
Arithmetic Ops 2’s comp. Integer
Data Requirement 2kbyte Min RAM
Data Size 8 bit 8 bit 8 bit
Program 4kbyte Min ROM
Debug Data 2kbyte Min RAM
Debug Prog 4kbyte ROM
Debug Input/Output RS232
FunctionalUpdate 2,000 Instrs/Update



Common Bus Organization

o CPU Provides All Addressing And Must Be Able To Access All 
Addresses/Data In System

o Address Map Is  A Must

o “Which Came First, Chicken or Egg ?” 
» How Do We Get Data In/Out ?
» What Does System Bus Look Like ?



Common Bus Definition

o The Bus Signals Are Generated From The CPU In Our System:  We 
Must Know A Little About The CPU In Order To Define The Bus.

o Based On Requirements, The CPU Can Be Simple:
» Data 8 Bit Signed
» Addressing:   < 1 Meg
» Integer Arithmetic

o These Requirements Easily Achievable With Wide Variety Of CPU’s.
o We Can Base Our Decision:

» Prior Experience With CPU’s (What You Are Familiar With)
» Development/Support Environment

Lets Choose The Intel 8086



Intel 8086 Signals

o Three Functional Busses:
» Address 

A19 - AD0

» Data 
AD15 - AD0

» Control
Group1 Data Xfer {ALE, RD, WR, BHE, M/IO}
Group2 Interrupts {INTR,NMI,INTA}
Group3 Bus Control {HOLD,HLDA}

All Other Signals Will Stay Internal To CPU Subystem
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Memory Map

o Purpose Of Memory Map Is To Show Design Teams Where They 
Should Decode Their Memory, Devices, Etc.

o Memory Must Be Large Enough To Hold:
» RAM  Input Data, Temp Data, All Structures, Stack, Heap, etc...
» ROM  Program, Initialization, Debug Monitor

o I/O Is Usually Memory Mapped (But Doesn’t Need to Be)
» Provide A “Chunk” of Addresses (Assume Each Port Occupies an 

Address) 



RAM Requirements

o Intel CPU’s Want RAM Starting At Address x00000.
o We Need: Data Storage  2kbyte

Stack 2kbytes
Heap 2kbytes
Debug 2kbytes

8 kbytes
o Lets Double16 kbytes (All 4kbytes Segs)

00000

01FFF

Heap

Stack

Data

Debug

007FF
00800

00FFF
01000

017FF
01800

4 kbytes

4 kbytes

4 kbytes

4 kbytes



Stacks

o Stack:  Temporary Storage Space:  (Points to Last Valid Entry)
» Pass Variables Between Subroutines  Storage For Subroutine Calls

– PUSH AX -near CALL

70000h

7004C
7004Dh
7004Eh
7004Fh
70050h

o
o
o

IP High
IP Low

SP Start

SP New

Stack Segment
BASE = 7000h

70000h

7004C
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o
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AH
AL
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SP New

Stack Segment
BASE = 7000h



Heaps

o Heap:
» Memory Allocation During Run Time

– Int a[];
– Size Not Defined at Compile
– a = Malloc(100*sizeof(int));

» OS Usually Takes Care of This.  We Will Write Our Own



ROM Requirements

o ROM Needs To Hold:
» Program  4kbytes
» Debug     2 kbytes

Total  6 kbytes
Go to 8 kbytes

FE000

FFFFF

Program

Debug

4 kbytes

2kbytes

FEFFF
FF000

Reserved
By Intel



Address Map

o Place Subsystems At Particular Address Block Range.  This 
Guarantees That Parallel Design Teams Don’t Overlap Address 
Decode.

RAM

ROM

I/O

o
o
o

o
o
o

00000

01FFF

00FF00
00FFFF

FE000
FFFFF



Top Level Design Summary

o Create Subsystems
» Modularize the System

o Requirements Matrix
» Guarantee All Requirements Are Accounted For

o Define Internal Interfaces
» Define Signals/Data Structures Between Subsystems

o Define Memory Map
» Partitions System Address Space To Eliminate Overlap

Allows Multiple Groups To Work Simultaneously


