
Top Level Design

o OBJECTIVE: Learn How to Develop A Top Level Design

o OBJECTIVE: Learn Key Information Necessary For Top Level Design

o OBJECTIVE: Learn How to Document Top Level Design

Top Level Design Block Diagram

o The Main Purpose of the Top Level Design Is the Where

o Make a List of the What and Find a Home For Each Requirement.
» Can Use a Matrix
» Modularize As Much As Possible. We Will Define Functional

Subsystems
o Define Interface Between the Subsystems

o After The Subsystems and Interfaces are Defined, We Will Develop
The Derived Requirements.
» Assign Portions of Time Line, Size, Power etc to Each Subsystem

Make a List of the What and Find a Home For Each Requirement

Interfaces to Outside World {Parallel and Serial Ports}
We will Create an I/O Subsystem Module for Interfaces

CPU
We Will Create A CPU Subsystem (Brains of System)

Memory
We Will Create a Memory Subsystem Module

Programs
Make Sure The Programs Are Accounted For
Memory Map and Allocations (Enough Memory For Programs,Data)

Subsystems on Common Bus Organization

Common System Bus

CPU
Subsystem

Memory
Subsystem

I/O Subsystem

8 8 8 8
6 8

Desired Actual
Dh Dfh f h fdsr_In Act_In Out RS-232

Requirements/Subsystem Matrix

Requirements Matrix Maps Requirements Into Appropriate System

CPU Subsystem Memory Subsystem I/O Subsystem
Requirement
Current Position 2 8-bit Par. Inputs
Desired Position 2 8-bit Par. Inputs
Output Deltas 6,8-bit Par. Outputs
Arithmetic Ops 2’s comp. Integer
Data Requirement 2kbyte Min RAM
Data Size 8 bit 8 bit 8 bit
Program 4kbyte Min ROM
Debug Data 2kbyte Min RAM
Debug Prog 4kbyte ROM
Debug Input/Output RS232
FunctionalUpdate 2,000 Instrs/Update

Common Bus Organization

o CPU Provides All Addressing And Must Be Able To Access All
Addresses/Data In System

o Address Map Is A Must

o “Which Came First, Chicken or Egg ?”
» How Do We Get Data In/Out ?
» What Does System Bus Look Like ?

Common Bus Definition

o The Bus Signals Are Generated From The CPU In Our System: We
Must Know A Little About The CPU In Order To Define The Bus.

o Based On Requirements, The CPU Can Be Simple:
» Data 8 Bit Signed
» Addressing: < 1 Meg
» Integer Arithmetic

o These Requirements Easily Achievable With Wide Variety Of CPU’s.
o We Can Base Our Decision:

» Prior Experience With CPU’s (What You Are Familiar With)
» Development/Support Environment

Lets Choose The Intel 8086

Intel 8086 Signals

o Three Functional Busses:
» Address

A19 - AD0

» Data
AD15 - AD0

» Control
Group1 Data Xfer {ALE, RD, WR, BHE, M/IO}
Group2 Interrupts {INTR,NMI,INTA}
Group3 Bus Control {HOLD,HLDA}

All Other Signals Will Stay Internal To CPU Subystem

Common Bus

Common
System

Bus

CPU
Subsystem

Memory
Subsystem

I/O Subsystem

8 8 8 8
6 8

Desired Actual
Dh Dfh f h fdsr_In Act_In Out RS-232

A19:0

D15:0
Control

Memory Map

o Purpose Of Memory Map Is To Show Design Teams Where They
Should Decode Their Memory, Devices, Etc.

o Memory Must Be Large Enough To Hold:
» RAM Input Data, Temp Data, All Structures, Stack, Heap, etc...
» ROM Program, Initialization, Debug Monitor

o I/O Is Usually Memory Mapped (But Doesn’t Need to Be)
» Provide A “Chunk” of Addresses (Assume Each Port Occupies an

Address)

RAM Requirements

o Intel CPU’s Want RAM Starting At Address x00000.
o We Need: Data Storage 2kbyte

Stack 2kbytes
Heap 2kbytes
Debug 2kbytes

8 kbytes
o Lets Double16 kbytes (All 4kbytes Segs)

00000

01FFF

Heap

Stack

Data

Debug

007FF
00800

00FFF
01000

017FF
01800

4 kbytes

4 kbytes

4 kbytes

4 kbytes

Stacks

o Stack: Temporary Storage Space: (Points to Last Valid Entry)
» Pass Variables Between Subroutines Storage For Subroutine Calls

– PUSH AX -near CALL

70000h

7004C
7004Dh
7004Eh
7004Fh
70050h

o
o
o

IP High
IP Low

SP Start

SP New

Stack Segment
BASE = 7000h

70000h

7004C
7004Dh
7004Eh
7004Fh
70050h

o
o
o

AH
AL

SP Start

SP New

Stack Segment
BASE = 7000h

Heaps

o Heap:
» Memory Allocation During Run Time

– Int a[];
– Size Not Defined at Compile
– a = Malloc(100*sizeof(int));

» OS Usually Takes Care of This. We Will Write Our Own

ROM Requirements

o ROM Needs To Hold:
» Program 4kbytes
» Debug 2 kbytes

Total 6 kbytes
Go to 8 kbytes

FE000

FFFFF

Program

Debug

4 kbytes

2kbytes

FEFFF
FF000

Reserved
By Intel

Address Map

o Place Subsystems At Particular Address Block Range. This
Guarantees That Parallel Design Teams Don’t Overlap Address
Decode.

RAM

ROM

I/O

o
o
o

o
o
o

00000

01FFF

00FF00
00FFFF

FE000
FFFFF

Top Level Design Summary

o Create Subsystems
» Modularize the System

o Requirements Matrix
» Guarantee All Requirements Are Accounted For

o Define Internal Interfaces
» Define Signals/Data Structures Between Subsystems

o Define Memory Map
» Partitions System Address Space To Eliminate Overlap

Allows Multiple Groups To Work Simultaneously

