
Computer System Design Lab 1

CSCE 4114
Embedded Systems

Top Down Structured Design

David Andrews
Rm 527 JBHT

dandrews@uark.edu

mailto:dandrews@ittc.ku.edu

Computer System Design Lab 2

What We Will Cover Today

• Typical Design Flow
• Top Down Design Approach

• Understanding Requirements
• Functional
• Behavioral
• Timing
• Physical

• Perform Requirements Analysis on Specific Example
• Taking Verbal Description and Generating Requirements

Computer System Design Lab 3

• Requirements Assessment: What is it
• Paper and pencil work/Negotiations with customer
• Final requirements is your contract with customer, need

to get it correct
• Documentation: System Requirements Specification

(SRS)
• Top Level Design: Where are you going to put it

• Functional Descriptions/Block Diagrams
• Hardware Software partitioning
• Automated Tools available (will discuss later)
• Documentation: Hardware/Software Top Level Design

Documents (STLDD/HTLDD)

Overview of Top Down Design

Computer System Design Lab 4

Overview of Top Down Design

• Detailed Design: How are you going to design it
• Hardware Component selections, Fan Ins/Outs,

simulations
• Software Modules, Subroutines
• Documentation: Hardware/Software Detailed Design

Document (HDDD/SDDD)
• Integration and Test: Verification Frustration

• Before Modules Brought Together, Unit Test
• Bring Modules Together. This is where the rubber

hits the road
• Testing Based on Pre-Defined Hardware/Software

Test Plan (HTP/STP)

Computer System Design Lab 5

Top Down Philosophy
• Design Process is iterative, you make a stab at next lower

level, then based on results, revisit upper level and adjust.
Adjustments affect everyone, not just you

• This seems like work, why not just “go for it”
• Need to know what you are designing first before

designing it.
• Much easier to get a warm and fuzzy that the big

picture is correct
• Most projects are group oriented, you need to

interface with others

• 10:1 rule Each hour spent at the higher abstract level
will save 10 hours at the next lower level.

• Very expensive in Cost and Time to get to integration
and test, and find that you make errors.

Computer System Design Lab 6

Requirements Analysis
• Requirements Assessment: What is it

• Timing: How fast does your system need to be ? MIPS/FLOPS,
turnaround times, input/output times etc

• Sizing: Most Systems are size limited. Anyone can develop a
supercomputer/flight controller etc if you have enough space.

• Interfaces: Are you hooked up to sensors inputting data ?
How is the world going to communicate with your system ?

• Other Special Requirements (Radiation Hardened, etc) These
can affect cost, size, performance etc.

• Customer may give you a laundry list that sometimes can be
conflicting. You need to apply engineering expertise to give honest
assessments. Customer may not really know all requirements, you
again must help

• Most Contract bids are based on Requirements Analysis. You must
have a good understanding of all requirements in order to propose a
feasible system solution

• THIS IS YOUR CONTRACT, WHEN YOU IMPLEMENT ALL
REQUIREMENTS YOU ARE DONE. IF THEY ARE NOT
IMPLEMENTED, YOU ARE NOT

Computer System Design Lab 7

Top Level Design

• Top Level Design: Where are you going to put it
• System Block Diagram
• System Address Map
• Debug Support
• Derived Requirements
• Subsystem Interfaces

• This is your Top Level Partitioning. Teams are assigned to
implement modules defined here.

• IMPORTANT: Interfaces are defined. This allows teams to
work independently and simultaneously.

• Derived requirements are targets for teams. They may not
know or care about overall system. They just meet the
derived requirements.

• Don’t miss debug support. This may not be discussed in
requirements analysis, but is key for further design and
implementation

Computer System Design Lab 8

Detailed Design

• Each Module in Top Level Design is further partitioned and
designed. More derived requirements for each block in a
module.

• Interfaces within module are defined, chips selected, actual
signals/interconnections are defined.

• Functional Simulations are performed to guarantee the
functionality of the Module. I.e., is the correct answer
produced ? Are the algorithms correct ?

• Simulations of Hardware performed in structured fashion
(More Later) with automated tools.

• Detailed Design is last chance to functionally knock out bugs
before tedious implementation.

• Automated Tools are Helping in the Detailed Design

Computer System Design Lab 9

Implementation
• At this stage, the design should be proven correct. You

want to implement the correct logic, etc.

• Circuit design based on Logic Family

• Board Layouts.

• Physical constraints such as size, weight, power must be met.

• This is the last step in the design process (before trying to
make sense of what you designed). It took a long time to get
here, but if done correctly, this is only a mechanical
excersize.

Computer System Design Lab 10

Integration and Test

• Where the Rubber hits the road.....

• This step is usually underwhelmed in planning stage, and is
overwhelming in actual work.

• Integration and Test can take as long or longer than the
other design steps.

• Philosophy: Minimize the unknowns. Common approach of
junior engineers is to “go for it”. Better to take tiny bites
than choke on a big piece.

• Test Modules First, subsystems second, then two
subsystems, then multiple tested subsystems etc. You must
go back and retest other components when anything that
affects it changes.

• The results of this is when you get paid........

Computer System Design Lab 11

Summary
• Design Methods

• Top Down
• Bottom Up
• Random

• Top Down Design Steps
• System Requirements Specification What

– Document SRS
• Top Level Design Where

– Document STLDD/HTLDD
• Detailed Design How

– Document (Schematics, Code)
• Integration and Test Selloff

– Document STP/HTP

Computer System Design Lab 12

Requirements

Lets Take a Closer Look at Requirements

