3. {)
FJ

CSCE 4114
FreeRtos

David Andrews
dandrews@uark.edu

omputer System Design Lab

mailto:dandrews@ittc.ku.edu

Agenda

» Defining and Creating Tasks
* Intro to Task Scheduler
» Tick Interrupt

H omputer System Design Lab

Some Definitions to Start

* Processes and Threads: Independent

sequences of execution.

» Threads: run in shared memory space
* Processes: run in separate memory spaces

» We will work with Tasks == Threads
* Have their own context (PC, Reg File, Stack)

- Will assign Priorities
Visible by an OS Scheduler

““‘_‘_w.t_:'
H omputer System Design Lab

Simple View of Task "State”

FIGURE 6.6
Scheduling states of a process.

» Executing: only 1 currently on CPU
* Ready Tasks: Not blocked or waiting on

anything. Can have many-sort by priority

* Waiting Tasks: Blocked or Suspended

omputer System Design Lab

FreeRTOS Task State Machine

Nt Rur A

Not Running

super state . ~

(p) | / \.‘
Suspended \

__A J \
VTaskSuspend) vTaskSuspend()
called called

vTaskResume()
called
Running
Event Blocking API
vTasg::zgend() function called
/ /
Blocked

J

Figure 15. Full task state machine

omputer sysiem vesign Lap

Scheduler: How is it invoked ?

Tick
interrupt
occurs

Kernel
Task 1
Task 2

Kernel runs in tick
interrupt to select

next task

Newly selected task runs when
" | the tick interrupt completes

t1

0 3

+ Simplest: Timer Tick (periodic interrupt)
+ Set in FreeRTOS using TICK_RATE_HZ

‘-.n\.‘“:t:'.
H omputer System Design Lab

Inside Tick Interrupt

task 1

vTaskSwitchContext

portSAVE_CONTEXT | | portRESTORE_CONTEXT

vPreemptiveTick

Sequence diagram for freeRTOS.org context switch.

omputer System Design Lab

Priority Based Scheduling

* Pre-emptive: Task on the Processor can
be interrupted.
-+ -Use Timer Tick to check
* Non pre-emptive: Once on CPU Tasks

cannot be interrupted.
-+ -Don't use Timer Timer Tick
» Current Tasks can suspend itself. That's it |

““‘_‘_w.t_&.:'
H omputer System Design Lab

Priorities

+ Static: Assign once and forget.
Scheduler cannot change

» Dynamic: Assigned but Scheduler can
change as the system runs

+ Static: RMS Rate Monotonic Scheduling
» Dynamic: EDF Earliest Deadline First

H omputer System Design Lab

RMS

Example 6.3

Rate-monotonic scheduling
Here Is a simple set of processes and their characteristics.

Process Execution time Period

P1 4
P2 2 6
P3 3 12

Applying the principles of RMA, we give P1 the highest priority, P2 the middle priority,
and P3 the lowest priority. To understand all the Interactions between the periods, we need to
construct a time line equal in length to hyperperiod, which is 12 In this case.

P3 B []

P2

Ilmlsﬂ:i omputer System Design Lab 10

Rate Monotonic Analysis

v-%2 « Familiar Utilization Equation

* New Constraint on Utilization

* What is value as m -> infinity ?

» Only guarantees a schedule if
utilization is <= 69%

+ Doesn't mean can't happen for

higher utilizations just not
guaranteed |

H omputer System Design Lab

11

Pretty Simple Code for RMS

/* procassas[] is an array of procaess activation records,
storad in ordar of priority, with processas[0] being
thae highast-priority procass */

Activation_racord processas[NPROCESSES];

void RMA(int curraent) { /* currant = currently axecuting
procaess */
int 1i;
/* turn off current procass (may bae turnaed back on) */
procassas [currant] .state = READY_STATE;

/* find procass to start axecuting */
for (1 = 0; 1 < NPROCESSES; i++)
if (processes|i].state == READY_STATE) ({
/* make this thae running procass */
procassas[i] .state == EXECUTINC_STATE;
braak;

)

FIGURE 6.12

C code for rate-monotonic scheduling.

omputer System Design Lab

12

Earliest Deadline First

Example 6.4

Earliest-deadline-first scheduling
Consider the following processes:

Process Execution time Perlod

P1 1 3
P2 1 4
P3 2 5

The hyperperiod Is 60. In order to be able to see the entire period, we write It as a table:

» Dynamic Adjustment of Priority as Tasks
run

H omputer System Design Lab

13

Tasks....

void ATaskFunction(void *pvParameters)

/* Variables can be declared just as per a normal function. Each instance of a task
created using this example function will have its own copy of the lVariableExample
variable. This would not be true if the variable was declared static - in which case
only one copy of the variable would exist, and this copy would be shared by each
created instance of the task. (The prefixes added to variable names are described in
section 1.5, Data Types and Coding Style Guide.) */

int32_t 1lVariableExample = 0;

/* A task will normally be implemented as an infinite loop. */
for(;;)
{

/* Should the task implementation ever break out of the above loop, then the task
must be deleted before reaching the end of its implementing function. The NULL
parameter passed to the vTaskDelete() API function indicates that the task to be
deleted is the calling (this) task. The convention used to name API functions is
described in section 0, Projects that use a FreeRTOS version older than V9.0.0
must build one of the heap n.c files. From FreeRTOS V9.0.0 a heap n.c file is only
required if configSUPPORT DYNAMIC ALLOCATION is set to 1 in FreeRTOSConfig.h or if
configSUPPORT DYNAMIC ALLOCATION is left undefined. Refer to Chapter 2, Heap Memory
Management, for more information.
Data Types and Coding Style Guide. */

vTaskDelete (NULL) ;

Listing 12. The structure of a typical task function

omputer System Design Lab

14

“Creating” the Task

BaseType t xTaskCreate(TaskFunction t pvTaskCode,

pvTaskCode
pcName
usStackDepth
*pvParameters
uxPriority
*pxCreatedTask

omputer System Design Lab

const char * const pcName,
uintlé t usStackDepth,

void *pvParameters,
UBaseType t uxPriority,
TaskHandle t *pxCreatedTask);

Pointer to your task
Just convenient name for your intere
Each Task has 1t’s own Stack

Void pointer to optional parameters
Used by Scheduler

Handle Identified for Task

15

Two Ditterent Example Tasks

void vlaskl(void pvPacaneters) void vIask2(void *pvParaneters)

({

const char *pelaskNane = "Task 1 is rumning\e\n"; const char *pclaskNane = "Task 2 is runing\r\n';

volatile uint32 t ul; /* volatile to ensure ul is not optinized avay. */ volatile uint32 t ul; /* volatile to ensure ul is not optinized avay, ¥/

[* As per nost tasks, this task is implenented in an infinite loop. + /* AS per most tasks, this task is implenented in an infinite loop. */

for(;1) for(;)
[{
[* Print out the nane of this task, */ [* Print out the nane of this task, */
vPrintString(peTaskNane) ; vBrintString(pelaskNane);
[* Delay for a period. ¥/ [* Delay for a period, */
for(ul = 0; ul < nainDELAY LOOP COUNT; ultt) for(ul = 0; ul < nainDELAY LOOP COUNT; ultt)
l [
[* This loop is just a very crude delay implementation, Ther [* This loop is just a very crude delay implementation, There is
nothing to do in here. Later examples will replace this crud nothing to do in here, Later examples will replace this crude
loop with & proper delay/sleep function, */ loop with a proper delay/sleep function, */

1 }
| llmsn omputer System Design Lab 16

Using xTaskCreate() in Main

int main(void)

{

/* Create one of the two tasks. Note that a real application should check
the return value of the xTaskCreate() call to ensure the task was created
successfully. */
xTaskCreate (vTaskl, /* Pointer to the function that implements the task. */
"Task 1",/* Text name for the task. This is to facilitate
debugging only. */
1000, /* Stack depth - small microcontrollers will use much
less stack than this. */
NULL, /* This example does not use the task parameter. */
1, /* This task will run at priority 1. */
NULL); /* This example does not use the task handle. */

/* Create the other task in exactly the same way and at the same priority. */
xTaskCreate (vTask2, "Task 2", 1000, NULL, 1, NULL);

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler () ;

/* If all is well then main() will never reach here as the scheduler will
now be running the tasks. If main() does reach here then it is likely that
there was insufficient heap memory available for the idle task to be created.
Chapter 2 provides more information on heap memory management. */

for(;;)i

omputer System Design Lab

17

Output

cv C\WINDOWS\system32\cmd.exe - rtosdemo .

C:\Temp>rtosdemo
: is »unning

is running
is running
is running
running

s running
is running
running
running
running
running

is running
is running
running

|
2
1
2
1
2
1
2
|
2
1
2
1
2

Figure 10. The output produced when Example 1 is executed’

omputer System Design Lab

Timer ticks

Attime t1, Task 1 |
enters the Running

state and executes
until time t2

At time t2 Task 2 enters the Running
state and executes until time t3 - at
which point Task1 re-enters the
Running state

Task1 o—

y ./’

H © 3 Tme

omputer System Design Lab

19

One function......

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

volatile uint32 t ul; /* volatile to ensure ul is not optimized away. */

/* The string to print out is passed in via the parameter. Cast this to a
character pointer. */
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)
{

/* Print out the name of this task. */

vPrintString(pcTaskName) ;

/* Delay for a period. */

for(ul = 0; ul < mainDELAY LOOP_COUNT; ul++)

{
/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later exercises will replace this crude
loop with a proper delay/sleep function. */

Listing 18. The single task function used to create two tasks in Example 2

omputer System Design Lab

20

As multiple "tasks”

static const char *pcTextForTaskl "Task 1 is running\r\n";
static const char *pcTextForTask2 "Task 2 is running\r\n";

int main(void)
{
/* Create one of the two tasks. */
xTaskCreate (vTaskFunction, /* Pointer to the function that
implements the task. */
"Task 1", /* Text name for the task. This is to
facilitate debugging only. */
1000, /* Stack depth - small microcontrollers
will use much less stack than this. */
(void*) pcTextForTaskl, /* Pass the text to be printed into the
task using the task parameter. */
a 5 /* This task will run at priority 1. */
NULL) ; /* The task handle is not used in this
example. */

/* Create the other task in exactly the same way. Note this time that multiple
tasks are being created from the SAME task implementation (vTaskFunction). Only
the value passed in the parameter is different. Two instances of the same

task are being created. */

xTaskCreate (vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2, 1, NULL);

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler() ;

Ilmsﬂ"i omputer System Design Lab

Time Measurement and Tick Interrupt

In FreeRTOSConfig.h
ntorrapt 1 select ﬁ configTICK_RATE_HZ

next task

Tick AN

interrupt Newly selected task runs when
occurs /| the tick interrupt completes

Kernel

Task 1

Task 2

1 t2 13

Handy Macro function
TickType t xTimeInTicks = pdMS TO TICKS(200);

H omputer System Design Lab o)

Introducing Priorities

/* Define the strings that will be passed in as the task parameters. These are
defined const and not on the stack to ensure they remain valid when the tasks are
executing. */

static const char *pcTextForTaskl

"Task 1 is running\r\n";

static const char *pcTextForTask2 = "Task 2 is running\r\n";

int main(void)

{

/* Create the first task at priority 1. The priority is the second to last
parameter. */
xTaskCreate (vTaskFunction, "Task 1", 1000, (void*)pcTextForTaskl, 1, NULL);

/* Create the second task at priority 2, which is higher than a priority of 1.

The priority is the second to last parameter. */
xTaskCreate (vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2, 2, NULL);

/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler () ;

/* Will not reach here. */
return 0;

For prior example, what would be the output ?

omputer System Design Lab

23

Introducing Priorities

C:\Temp>rtosdemo

is r»unning
is running
is »unning
is running
is r»unning
is »unning
is r»unning
is running
is running
is running
is r»unning
is r»running
is running
is running
is »unning

2
2
p
2
2
2
2
2
p
2
2
2
2
2
p

Figure 13. Running both tasks at different priorities

Starvation ! What went wrong (if anything ?)

H omputer System Design Lab

Introducing Priorities

30 to page 90 | t The scheduler runs in the tick interrupt

Tick but selects the same task. Task 2 is
interrupt always in the Running state and Task 1 is
occurs always in the Not Running state

Kernel ﬂ 4

Task 1

Task 2 L

Task 2 1s always in “running” state
_Need to either suspend or block it from being considered

| WlLZl N Fomputer System Design Lab

Rounding out scheduler FSM

Move Task 2 into a non-running

waiting state:
a. Blocked

b. Suspended

8

\

Not Running
(super state)
Suspended q\
vTaskSuspend|() vTaskSuspend()
called called
vTaskResume()
called
Running
vTaskSuspend() Event Bloc_king API
called)\chon called
\ Blocked 4— |

Figure 15. Full task state machine

26

Implicit Time Delay
void vTaskDelay(TickType t xTicksToDelay) ;

void vTaskFunction(void *pvParameters)

{
char *pcTaskName;

const TickType t xDelay250ms = pdMS TO TICKS(250);

/* The string to print out is passed in via the parameter. Cast this to a

character pointer. */
pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)
{

/* Print out the name of this task. */

vPrintString(pcTaskName) ;

/* Delay for a period. This time a call to vTaskDelay() is used which places
the task into the Blocked state until the delay period has expired. The
parameter takes a time specified in ‘ticks’, and the pdMS TO TICKS() macro

is used (where the xDelay250ms constant is declared) to convert 250
milliseconds into an equivalent time in ticks. */

vTaskDelay(xDelay250ms) ;

omputer System Design Lab 27

New Output

ey CG\WINDOWS\system32\cmd.exe - rtosdemo

C:\Tenp>rtosdemo

is running
is »running
is running
is »unning
is »unning
is »unning
is »running
is running
is running
is running
is »unning
is »unning
is running
is running
is »unning
is running

2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1

Figure 16. The output produced when Example 4 is executed

w_*
H omputer System Design Lab

Better but is it periodic ?

vTaskDelay() does not guarantee frequency at which
task runs is fixed.

~Why ?~

3 “‘--.Jt.;a'f
H omputer System Design Lab

29

Better but is it periodic ?

vTaskDelay() does not guarantee frequency at which
task runs is fixed.

~Why ?~

Time when task leaves the Blocked state is relative to
when vTaskDelay() called .

““‘\,‘_3;.:'
H omputer System Design Lab

30

Better but is it periodic ?

vTaskDelay() does not guarantee frequency at which
task runs is fixed.

~Why ?~

Time when task leaves the Blocked state is relative to
when vTaskDelay() called .

A better solution: TaskDelayUntil()

H omputer System Design Lab

31

The vTaskDelayUntil()

volid vTaskDelayUntil (

TickType t* pxPreviousWakeTime,

TickType t xTimeIncrement); \\\\\\
\ Automatically updated

Set task period here

H omputer System Design Lab

32

Prior Example.....

void vTaskFunction(void *pvParameters)
{

char *pcTaskName ;
|TickType_t xLastWakeTime;

/* The string to print out is passed in via the parameter. Cast this to a

character pointer. */
pcTaskName = (char *) pvParameters;

/* The xLastWakeTime variable needs to be initialized with the current tick
count. Note that this is the only time the variable is written to explicitly.

ly updated within vTaskDelayUntil(). */
xLastWakeTime = xTaskGetTickCount() ;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;7)
{

/* Print out the name of this task. */
vPrintString(pcTaskName) ;

/* This task should execute every 250 milliseconds exactly. As per

the vTaskDelay() function, time is measured in ticks, and the
pdMS TO TICKS() macro is used to convert milliseconds into ticks.
xLastWakeTime is automatically updated within vTaskDelayUntil(), so is not
explicitly updated by the task. */

vTaskDelayUntil (&xLastWakeTime, pdMS TO TICKS(250));

}
}

m Listing 25. The implementation of the example task using vTaskDelayUntil()
w

33

Introducing the Idle Task...

4 - When the delay expires the scheduler moves the
2 - Task 1 prints out its string, then it too[j tasks back into the ready state, where both execute

enters the Blocked state by calling again before once again calling vTaskDelay() causing
vTaskDelay(). them to re-enter the Blocked state. Task 2 executes

first as it has the higher priority.

Task 1
Task2 a
|dle
t1 12 {3 Time tn

1 - Task 2 has the highesf priority so runs first. It
prints out its string then calls vTaskDelay() - and in so 3 - At this point both application tasks are in
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.
priority Task 1 to execute.

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop

omputer System Design Lab

34

Mixing behaviors....

1. Two tasks are created at priority 1. These do
nothing other than continuously print out a string.

2. A third task is then created at priority 2, (above the
priority of the other two tasks). The third task also just
prints out a string, but this time periodically, so uses
the vTaskDelayUntil() API function to place itself into
the Blocked state between each print iteration.

““‘_‘_w.t_&.:'
H omputer System Design Lab

35

void vContinuousProcessingTask(void *pvParameters)

{
char *pcTaskName;

L]
' 4|
* ing tasks
/* The string to print out is passed in via the parameter. Cast this to a
character pointer. */

pcTaskName = (char *) pvParameters;

/* As per most tasks, this task is implemented in an infinite loop. */
foxr{ 7:)
{

/* Print out the name of this task. This task just does this repeatedly
without ever blocking or delaying. */

vPrintString(pcTaskName) ;

Listing 26. The continuous processing task used in Example 6

void vPeriodicTask(void *pvParameters)

{

TickType t xLastWakeTime;

const TickType t xDelay3ms = pdMS TO TICKS(3)

/* The xLastWakeTime variable needs to be initialized with the current tick
count. Note that this is the only time the variable is explicitly written to.

After this xLastWakeTime is managed automatically by the vTaskDelayUntil()
API function. */

xLastWakeTime = xTaskGetTickCount();

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)
{

/* Print out the name of this task. */

vPrintString("Periodic task is running\r\n");

/* The task should execute every 3 milliseconds exactly — see the
declaration of xDelay3ms in this function. */
vTaskDelayUntil (&xLastWakeTime, xDelay3ms);

Listing 27. The periodic task used in Example 6

36

Output

©r. C:\Windows\system32\cmd.exe

Continuous task 2 running
Continuous task 2 running
Periodic task is running
Continuous task running
Continuous task running
Continuous task running
Continuous task running
Continuous task 1 running
Continuous task running
Continuous task running
Continuous task running
Continuous task 2 running
Continuous task 2 running
Continuous task 1 running
Continuous task running
Continuous task running
Continuous task running
Continuous task 1 running
Continuous task running
Continuous task 1 running
Continuous task running
Continuous task running
Periodic task is running

b b b b b et b b ek IND NS END NS IND B b b b b

Continuous
Continuous

task 2 running
task 2 runnin

Figure 19. The output produced when Example 6 is executed

” omputer System Design Lab

37

Continuous 1 ¢

Continuous 2

the Blocked state.

4 - At time t5 the tick interrupt finds that the Periodic task block
period has expired so moved the Periodic task into the Ready
state. The Periodic task is the highest prionty task so
immediately then enters the Running state where it prints out its
string exactly once before calling vTaskDelayUntil() to retumn to

1 - Continuous task 1 runs for a
complete tick period (time slice
between times t1 and t2) - during
which time it could print out its
string many times.

Periodic

Idle

5 - The Periodic task entering the N
Blocked state means the scheduler has
again to choose a task to enter the
Running state - in this case Continuous

1 is chosen and it runs up to the next tick
interrupt - during which time it could print
out its string many times.

/

The Idle task never enters the
Running state as there are
h always higher priority task that
are able to do so.

2 - The tick interrupt occurs during which the [\
scheduler selects a new task to run. As both
Continuous tasks have the same priority and
both are always able to run the scheduler
shares processing time between the two - so
Continuous 2 enters the Running state where it
remains for the entire tick period - during which

t1 /12 t3 Timets
/

N\

3 - At time 13 the tick interrupt
runs again, causing a switch back
to Continuous 1, and so it goes

on.

time it could print out its string many times.

,omputer System besign Lab

38

FreeRTOS Sched. Options

FreeRTOSConfig.h.

conficUSE_PREEMPTION /*

configUSE_TIME_SLICING /*no round robin for tasks
of equal priority*/

configUSE_TICKLESS_IDLE /*turns tick interrupt off */

““‘_‘_3_:'
H omputer System Design Lab

39

Preemption=1, time slicing=1

. Task1 (high, event) .
Task?_ (med, perIOdIC)_
: Task3 (low, event)
dle task (contlnuous)

‘Event processing is :
delayed until hlgher
‘priority tasks block :

hypothetlcal application in which each task has been assmned a unlque |
priority

40

Preemption=0, time slicing=1

Two tasks, TaskLL=low priority, TaskH=high priority. Assume
TaskL has processor.

Q: When does TaskH get to run ?
A: When TaskL gives up processor.

How ?
Yield() or block on mutex.

41

Preemption=0, time slicing=1

. Task 1 unblocks when an ‘Task 1 enters the Blocked state, allowing'
‘interrupt writes to a semaphore: Task 2 to enter the Running state

-

Ny
mmmm
......

...................................

................................

‘Task 2 unblocks when ‘Task 3 calls téékYIELD(), allowing
‘Task 3 writes to a queue - Task 1 to enter the Running state

’I‘liilzd omputer System Design Lab

Preemption=1, time slicing=0

Task 1 leaves the Blocked state
and pre- empts the Idle task

Task 1 re-enters the
Blocked state

Task1 (high, event)«
Task2 (Idle priority, contlnuous)

Idle task (contlnuous)—

_

i 2 ©B v b
76

8 ul. 02 u3
t7 t9t10

Task 1 leaves the/BIocked
state and pre-empts Task 2

Task 1 re;enters the
Blocked state

Figure 29 Execution pattern that demonstrates how

tasks of equal priority can

receive hugely different amounts of processing time when time slicing is not

used

L% u\‘\.' .
N omputer System Design Lab

43

Semaphores in FreeRTOS

6.4 Binary Semaphores Used for Synchronization

The xSemaphoreCreateBinary() APl Function

The xSemaphoreTake() APl Function

The xSemaphoreGiveFromISR() APl Function

Example 16. Using a binary semaphore to synchronize a task with an interrupt ...
Improving the Implementation of the Task Used in Example 16

6.5 Counting Semaphores
The xSemaphoreCreateCounting() APl Function
Example 17. Using a counting semaphore to synchronize a task with an interrupt . 21

” omputer System Design Lab

44

Semaphores in FreeRTOS

6.4 Binary Semaphores Used for Synchronization
The xSemaphoreCreateBinary() APl Function
The xSemaphoreTake() APl Function

The xSemaphoreGiveFromISR() APl Function

Example 16. Using a binary semaphore to synchronize a task with an interrupt ...
Improving the Implementation of the Task Used in Example 16

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

H omputer System Design Lab 45

Semaphores in FreeRTOS

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

Can be used on either binary/counting semaphores and mutexes

““‘_‘_w.t_:'
H omputer System Design Lab

46

Semaphores in FreeRTOS

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

““‘_‘_w.t_:'
H omputer System Design Lab

47

Semaphores in FreeRTOS

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

_

Amount of time to suspend 1if not successful

““‘_‘_w.t_:'
H omputer System Design Lab

48

Semaphores in FreeRTOS

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

_

Amount of time to suspend 1if not successful

0 = asynchronous, non blocking
X = suspend for x timer ticks

portMAX DELAY

““‘_‘_w.t_:'
H omputer System Design Lab

49

Semaphores in FreeRTOS

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

_

Amount of time to suspend 1if not successful

0 = asynchronous, non blocking
X = suspend for x timer ticks

portMAX DELAY

““‘_‘_w.t_:'
H omputer System Design Lab

50

