
Computer System Design Lab 1

CSCE 4114
FreeRtos

David Andrews
dandrews@uark.edu

mailto:dandrews@ittc.ku.edu

Computer System Design Lab 2

Agenda
• Defining and Creating Tasks
• Intro to Task Scheduler
• Tick Interrupt

Computer System Design Lab 3

Some Definitions to Start
• Processes and Threads: Independent

sequences of execution.
• Threads: run in shared memory space
• Processes: run in separate memory spaces

• We will work with Tasks == Threads
• Have their own context (PC, Reg File, Stack)
• Will assign Priorities
• ………Visible by an OS Scheduler

Computer System Design Lab 4

Simple View of Task “State”

• Executing: only 1 currently on CPU
• Ready Tasks: Not blocked or waiting on

anything. Can have many-sort by priority
• Waiting Tasks: Blocked or Suspended

Computer System Design Lab 5

FreeRTOS Task State Machine

Computer System Design Lab 6

Scheduler: How is it invoked ?

• Simplest: Timer Tick (periodic interrupt)
• Set in FreeRTOS using TICK_RATE_HZ

Computer System Design Lab 7

Inside Tick Interrupt

Computer System Design Lab 8

Priority Based Scheduling
• Pre-emptive: Task on the Processor can

be interrupted.
• -Use Timer Tick to check

• Non pre-emptive: Once on CPU Tasks
cannot be interrupted.
• -Don’t use Timer Timer Tick
• Current Tasks can suspend itself. That’s it !

Computer System Design Lab 9

Priorities
• Static: Assign once and forget.

Scheduler cannot change
• Dynamic: Assigned but Scheduler can

change as the system runs

• Static: RMS Rate Monotonic Scheduling
• Dynamic: EDF Earliest Deadline First

Computer System Design Lab 10

RMS

Computer System Design Lab 11

Rate Monotonic Analysis

• Familiar Utilization Equation

• New Constraint on Utilization
• What is value as m -> infinity ?
• Only guarantees a schedule if

utilization is <= 69%
• Doesn’t mean can’t happen for

higher utilizations just not
guaranteed !

Computer System Design Lab 12

Pretty Simple Code for RMS

Computer System Design Lab 13

Earliest Deadline First

• Dynamic Adjustment of Priority as Tasks
run

Computer System Design Lab 14

Tasks….

Computer System Design Lab 15

“Creating” the Task

pvTaskCode Pointer to your task
pcName Just convenient name for your interest
usStackDepth Each Task has it’s own Stack
*pvParameters Void pointer to optional parameters
uxPriority Used by Scheduler
*pxCreatedTask Handle Identified for Task

Computer System Design Lab 16

Two Different Example Tasks

Computer System Design Lab 17

Using xTaskCreate() in Main

Computer System Design Lab 18

Output

Computer System Design Lab 19

Timer ticks

Computer System Design Lab 20

One function……

Computer System Design Lab 21

As multiple “tasks”

Computer System Design Lab 22

Time Measurement and Tick Interrupt
In FreeRTOSConfig.h

TickType_t xTimeInTicks = pdMS_TO_TICKS(200);

configTICK_RATE_HZ

Handy Macro function……

Computer System Design Lab 23

Introducing Priorities

For prior example, what would be the output ?

Computer System Design Lab 24

Introducing Priorities

Starvation ! What went wrong (if anything ?)

Computer System Design Lab 25

Introducing Priorities

Task 2 is always in “running” state
Need to either suspend or block it from being considered

Computer System Design Lab 26

Rounding out scheduler FSM
Move Task 2 into a non-running
waiting state:
a. Blocked
b. Suspended

Computer System Design Lab 27

Implicit Time Delay
void vTaskDelay(TickType_t xTicksToDelay);

Computer System Design Lab 28

New Output

Computer System Design Lab 29

Better but is it periodic ?
vTaskDelay() does not guarantee frequency at which
task runs is fixed.

~Why ?~

Computer System Design Lab 30

Better but is it periodic ?
vTaskDelay() does not guarantee frequency at which
task runs is fixed.

~Why ?~

Time when task leaves the Blocked state is relative to
when vTaskDelay() called .

Computer System Design Lab 31

Better but is it periodic ?
vTaskDelay() does not guarantee frequency at which
task runs is fixed.

~Why ?~

Time when task leaves the Blocked state is relative to
when vTaskDelay() called .

A better solution: TaskDelayUntil()

Computer System Design Lab 32

The vTaskDelayUntil()
void vTaskDelayUntil(

TickType_t* pxPreviousWakeTime,

TickType_t xTimeIncrement);

Set task period here

Automatically updated!

Computer System Design Lab 33

Prior Example…..

Computer System Design Lab 34

Introducing the Idle Task…

Computer System Design Lab 35

Mixing behaviors….
1. Two tasks are created at priority 1. These do

nothing other than continuously print out a string.

2. A third task is then created at priority 2, (above the
priority of the other two tasks). The third task also just
prints out a string, but this time periodically, so uses
the vTaskDelayUntil() API function to place itself into
the Blocked state between each print iteration.

Computer System Design Lab 36

Combining blocking and non-blocking tasks

Computer System Design Lab 37

Output

Computer System Design Lab 38

Computer System Design Lab 39

FreeRTOS Sched. Options
FreeRTOSConfig.h.

configUSE_PREEMPTION /*

configUSE_TIME_SLICING /*no round robin for tasks
of equal priority*/

configUSE_TICKLESS_IDLE /*turns tick interrupt off */

Computer System Design Lab 40

Preemption=1, time slicing=1

Computer System Design Lab 41

Preemption=0, time slicing=1

Two tasks, TaskL=low priority, TaskH=high priority. Assume
TaskL has processor.

Q: When does TaskH get to run ?

A: When TaskL gives up processor.

How ?
Yield() or block on mutex.

Lets see………

Computer System Design Lab 42

Preemption=0, time slicing=1

Computer System Design Lab 43

Preemption=1, time slicing=0

Computer System Design Lab 44

Semaphores in FreeRTOS
6.4 Binary Semaphores Used for Synchronization ... 191
The xSemaphoreCreateBinary() API Function ... 194
The xSemaphoreTake() API Function .. 194
The xSemaphoreGiveFromISR() API Function .. 196
Example 16. Using a binary semaphore to synchronize a task with an interrupt ... 198
Improving the Implementation of the Task Used in Example 16 202

6.5 Counting Semaphores .. 208
The xSemaphoreCreateCounting() API Function .. 210
Example 17. Using a counting semaphore to synchronize a task with an interrupt . 211

Computer System Design Lab 45

Semaphores in FreeRTOS
6.4 Binary Semaphores Used for Synchronization ... 191
The xSemaphoreCreateBinary() API Function ... 194
The xSemaphoreTake() API Function .. 194
The xSemaphoreGiveFromISR() API Function .. 196
Example 16. Using a binary semaphore to synchronize a task with an interrupt ... 198
Improving the Implementation of the Task Used in Example 16 202

SemaphoreHandle_t xSemaphoreCreateBinary(void);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

Computer System Design Lab 46

Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary(void);

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

Can be used on either binary/counting semaphores and mutexes

SemaphoreHandle_t xSemaphoreCreateMutex(void)

Computer System Design Lab 47

Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary(void);

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

SemaphoreHandle_t xSemaphoreCreateMutex(void)

Computer System Design Lab 48

Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary(void);

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

Amount of time to suspend if not successful

SemaphoreHandle_t xSemaphoreCreateMutex(void)

Computer System Design Lab 49

Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary(void);

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

Amount of time to suspend if not successful
0 = asynchronous, non blocking
X = suspend for x timer ticks
portMAX_DELAY

SemaphoreHandle_t xSemaphoreCreateMutex(void)

Computer System Design Lab 50

Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary(void);

BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

Amount of time to suspend if not successful
0 = asynchronous, non blocking
X = suspend for x timer ticks
portMAX_DELAY

SemaphoreHandle_t xSemaphoreCreateMutex(void)

