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Agenda
• Defining and Creating Tasks
• Intro to Task Scheduler
• Tick Interrupt
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Some Definitions to Start
• Processes and Threads: Independent 

sequences of execution.
• Threads: run in shared memory space
• Processes: run in separate memory spaces

• We will work with Tasks == Threads
• Have their own context (PC, Reg File, Stack)
• Will assign Priorities
• ………Visible by an OS Scheduler
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Simple View of Task “State”

• Executing: only 1 currently on CPU
• Ready Tasks: Not blocked or waiting on 

anything.  Can have many-sort by priority
• Waiting Tasks: Blocked or Suspended
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FreeRTOS Task State Machine
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Scheduler: How is it invoked ?

• Simplest: Timer Tick (periodic interrupt)
• Set in FreeRTOS  using TICK_RATE_HZ
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Inside Tick Interrupt
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Priority Based Scheduling
• Pre-emptive: Task on the Processor can 

be interrupted.  
• -Use Timer Tick to check

• Non pre-emptive: Once on CPU Tasks 
cannot be interrupted.  
• -Don’t use Timer Timer Tick
• Current Tasks can suspend itself.  That’s it !
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Priorities
• Static:  Assign once and forget.  

Scheduler cannot change
• Dynamic:  Assigned but Scheduler can 

change as the system runs

• Static:  RMS  Rate Monotonic Scheduling
• Dynamic:  EDF Earliest Deadline First
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RMS



Computer System Design Lab 11

Rate Monotonic Analysis

• Familiar Utilization Equation

• New Constraint on Utilization
• What is value as m -> infinity ?
• Only guarantees a schedule if 

utilization is <= 69%
• Doesn’t mean can’t happen for 

higher utilizations just not 
guaranteed !
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Pretty Simple Code for RMS
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Earliest Deadline First

• Dynamic Adjustment of Priority as Tasks 
run
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Tasks….
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“Creating” the Task

pvTaskCode Pointer to your task
pcName Just convenient name for your interest
usStackDepth Each Task has it’s own Stack
*pvParameters Void pointer to optional parameters
uxPriority Used by Scheduler
*pxCreatedTask Handle  Identified for Task
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Two Different Example Tasks
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Using xTaskCreate() in Main
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Output
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Timer ticks
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One function……
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As multiple “tasks”
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Time Measurement and Tick Interrupt
In FreeRTOSConfig.h 

TickType_t xTimeInTicks = pdMS_TO_TICKS( 200 ); 

configTICK_RATE_HZ 

Handy Macro function……
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Introducing Priorities

For prior example, what would be the output ?
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Introducing Priorities

Starvation !  What went wrong (if anything ?)
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Introducing Priorities

Task 2 is always in “running” state
Need to either suspend or block it from being considered
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Rounding out scheduler FSM
Move Task 2 into a non-running
waiting state:
a. Blocked
b. Suspended
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Implicit Time Delay
void vTaskDelay( TickType_t xTicksToDelay ); 
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New Output
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Better but is it periodic ?
vTaskDelay() does not guarantee frequency at which 
task runs is fixed.

~Why ?~ 
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Better but is it periodic ?
vTaskDelay() does not guarantee frequency at which 
task runs is fixed.

~Why ?~ 

Time when task leaves the Blocked state is relative to 
when vTaskDelay() called . 
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Better but is it periodic ?
vTaskDelay() does not guarantee frequency at which 
task runs is fixed.

~Why ?~ 

Time when task leaves the Blocked state is relative to 
when vTaskDelay() called . 

A better solution: TaskDelayUntil()
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The vTaskDelayUntil()
void vTaskDelayUntil( 

TickType_t* pxPreviousWakeTime, 

TickType_t xTimeIncrement );

Set task period here

Automatically updated!
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Prior Example…..
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Introducing the Idle Task…
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Mixing behaviors….
1. Two tasks are created at priority 1. These do 

nothing other than continuously print out a string.

2. A third task is then created at priority 2, (above the 
priority of the other two tasks). The third task also just 
prints out a string, but this time periodically, so uses 
the vTaskDelayUntil() API function to place itself into 
the Blocked state between each print iteration.
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Combining blocking and non-blocking tasks
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Output
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FreeRTOS Sched. Options
FreeRTOSConfig.h.

configUSE_PREEMPTION /*

configUSE_TIME_SLICING /*no round robin for tasks 
of equal priority*/

configUSE_TICKLESS_IDLE /*turns tick interrupt off */
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Preemption=1, time slicing=1
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Preemption=0, time slicing=1

Two tasks, TaskL=low priority, TaskH=high priority.  Assume
TaskL has processor.   

Q: When does TaskH get to run ?

A:  When TaskL gives up processor.

How ? 
Yield() or block on mutex.

Lets see………
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Preemption=0, time slicing=1
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Preemption=1, time slicing=0
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Semaphores in FreeRTOS
6.4 Binary Semaphores Used for Synchronization ................................................. 191
The xSemaphoreCreateBinary() API Function ....................................................... 194
The xSemaphoreTake() API Function .................................................................... 194
The xSemaphoreGiveFromISR() API Function ...................................................... 196
Example 16. Using a binary semaphore to synchronize a task with an interrupt ... 198
Improving the Implementation of the Task Used in Example 16 ............................. 202

6.5 Counting Semaphores ...................................................................................... 208
The xSemaphoreCreateCounting() API Function .................................................... 210
Example 17. Using a counting semaphore to synchronize a task with an interrupt . 211
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Semaphores in FreeRTOS
6.4 Binary Semaphores Used for Synchronization ................................................. 191
The xSemaphoreCreateBinary() API Function ....................................................... 194
The xSemaphoreTake() API Function .................................................................... 194
The xSemaphoreGiveFromISR() API Function ...................................................... 196
Example 16. Using a binary semaphore to synchronize a task with an interrupt ... 198
Improving the Implementation of the Task Used in Example 16 ............................. 202

SemaphoreHandle_t xSemaphoreCreateBinary( void );

SemaphoreHandle_t xSemaphoreCreateMutex( void )
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Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary( void );

BaseType_t xSemaphoreTake( 
SemaphoreHandle_t xSemaphore, 
TickType_t xTicksToWait );

Can be used on either binary/counting semaphores and mutexes

SemaphoreHandle_t xSemaphoreCreateMutex( void )
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Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary( void );

BaseType_t xSemaphoreTake( 
SemaphoreHandle_t xSemaphore, 
TickType_t xTicksToWait );

SemaphoreHandle_t xSemaphoreCreateMutex( void )
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Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary( void );

BaseType_t xSemaphoreTake( 
SemaphoreHandle_t xSemaphore, 
TickType_t xTicksToWait );

Amount of time to suspend if not successful

SemaphoreHandle_t xSemaphoreCreateMutex( void )
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Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary( void );

BaseType_t xSemaphoreTake( 
SemaphoreHandle_t xSemaphore, 
TickType_t xTicksToWait );

Amount of time to suspend if not successful
0 = asynchronous, non blocking
X = suspend for x timer ticks
portMAX_DELAY

SemaphoreHandle_t xSemaphoreCreateMutex( void )
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Semaphores in FreeRTOS
SemaphoreHandle_t xSemaphoreCreateBinary( void );

BaseType_t xSemaphoreTake( 
SemaphoreHandle_t xSemaphore, 
TickType_t xTicksToWait );

Amount of time to suspend if not successful
0 = asynchronous, non blocking
X = suspend for x timer ticks
portMAX_DELAY

SemaphoreHandle_t xSemaphoreCreateMutex( void )


