CSCE 4114
Queue Management

David Andrews
dandrews@uark.edu

omputer System Design Lab

mailto:dandrews@ittc.ku.edu

A

genda

ow to Create a Queue
ow a Queue Manages Data it Contains
ow to Send/Receive Data on Queue

* Blocking on a Queue

» Task Priorities When Writing/Reading
» Blocking on Multiple Queues
 Overwriting Data in a Queue

omputer System Design Lab

Queue Basics

* Queues are Primatively:
* Message channels with storage

» User Defined Depths and Data Types

* Synchronization Mechanisms

» Can Block and Synch like Semaphores

* Queue's are Default FIFO Structures...
but operations provided for Stack Type
operations

omputer System Design Lab

Queue Basics

Task B
Queue

int y;

A queue is created to allow Task A and Task B to communicate. The queue can hold a maximum of S
integers. When the queue is created it does not contain any values so is empty.

Task A

Task B
Queue

ot Y N R II% int y;
x = 10; — Send

Task A writes (sends) the value of a local variable to the back of the queue. As the queue was previously

empty the value written is now the only item in the queue, and is therefore both the value at the back of thg
queue and the value at the front of the queue.

Task A Task B
Queue

int x; | I{ Il f{2o0]f10] int y;

x = 20; — Send f

Task A changes the value of its local variable before writing it to the queue again. The queue now
contains copies of both values written to the queue. The first value written remains at the front of the
queue, the new value is inserted at the end of the queue. The queue has three empty spaces remaining.
omputer System Design Lab

Queue Basics

Task A TaskB

int x; - int y;

x = 20; \\L/ v now equals 10

Task B reads (receives) from the queue into a different variable. The value received by Task B is the
value from the head of the queue, which is the first value Task A wrote to the queue (10 in this illustration).

'P"""‘

Task B

ueue L 2
LWL i 20 | int y;

Yy now equals 10

Task B has removed one item, leaving only the second value written by Task A remaining in the queue.
This is the value Task B would receive next if it read from the queue again. The queue now has four
empty spaces remaining.

omputer System Design Lab

xQueueCreate() APT

QueueHandle t xQueueCreate (UBaseType t uxQueuelength, UBaseType t uxItemSize);

Listing 40. The xQueueCreate() APl function prototype

Table 18. xQueueCreate() parameters and return value

Parameter Name Description

uxQueuelength The maximum number of items that the queue being created can hold

at any one time.

uxltemSize The size in bytes of each data item that can be stored in the queue.

Return Value If NULL is returned, then the queue cannot be created because there

is insufficient heap memory available for FreeRTOS to allocate the
queue data structures and storage area.

A non-NULL value being returned indicates that the queue has been
created successfully. The returned value should be stored as the

H . handle to the created queue.
” ‘ M‘ i ‘ A }f-,,w | |

5 (%
K \!

orrputer systiern vesigil Ldo

|

xQueueCreate() APT

QueueHandle t xQueueCreate (UBaseType t uxQueuelength, UBaseType t uxItemSize);

Listing 40. The xQueueCreate() APl function prototype

Table 18. xQueueCreate() parameters and return value

Parameter Name Description

uxQueuelength The maximum number of items that the queue being created can hold

at any one time.

uxltemSize The size in bytes of each data item that can be stored in the queue.

Return Value If NULL is returned, then the queue cannot be created because there

is insufficient heap memory available for FreeRTOS to allocate the
queue data structures and storage area.

A non-NULL value being returned indicates that the queue has been
created successfully. The returned value should be stored as the

H . handle to the created queue.
” ‘ M‘ i ‘ A }f-,,w | |

5 (%
K \!

orrputer systiern vesigil Ldo

|

Writing into the Queue

BaseType t xQueueSendToFront((QueueHandle t xQueue,
const void * pvItemToQueue,
TickType t xTicksToWait);

Listing 41. The xQueueSendToFront() API function prototype

BaseType t xQueueSendToBack(QueueHandle t xQueue,
const void * pvitemToQueue,
TickType t xTicksToWait);

Listing 42. The xQueueSendToBack() API function prototype

xQueueSend() Identical behaviors

o)
H omputer System Design Lab

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

: “\"-«3{‘:5*
H omputer System Design Lab

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

The handle of the queue to which the data is being sent (written). The
queue handle will have been returned from the call to xQueueCreate()

used to create the queue.

H omputer System Design Lab

10

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

The handle of the queue to which the data is being sent (written). The
queue handle will have been returned from the call to xQueueCreate()

used to create the queue.

pvitemToQueue A pointer to the data to be copied into the queue.

The size of each item that the queue can hold is set when the queue is
created, so this many bytes will be copied from pvitemToQueue into

the queue storage area.

H omputer System Design Lab

11

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the queue, should the

queue already be full.

H omputer System Design Lab

12

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the queue, should the
queue already be full.

Both xQueueSendToFront() and xQueueSendToBack() will return

immediately if xTicksToWait is zero and the queue is already full.

H omputer System Design Lab

13

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked

state to wait for space to become available on the queue, should the
queue already be full.

Both xQueueSendToFront() and xQueueSendToBack() will return

immediately if xTicksToWait is zero and the queue is already full.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait
indefinitely (without timing out), provided INCLUDE_vTaskSuspend is
set to 1 in FreeRTOSConfig.h.

o)
H omputer System Design Lab

14

Writing into the Queue

BaseType_t xQueueSend (QueueHandle_t Xqueue,
const void * pvlitemToQueue,
TickType_t xTicksToWait);

Key Idea* Task will be suspended 1f trying to place
new data into a full queue

Can use this to synchronize: how ?

: “\.‘_A;t_;;f.‘
H omputer System Design Lab

15

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,
const void * pvBulifer,
TickType_t xTicksToWait);

The handle of the queue from which the data is being received (read).
The queue handle will have been returned from the call to
xQueueCreate() used to create the queue.

H omputer System Design Lab

16

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,
const void * pvBulifer,
TickType_t xTicksToWait);

The handle of the queue from which the data is being received (read).
The queue handle will have been returned from the call to
xQueueCreate() used to create the queue.

A pointer to the memory into which the received data will be copied.

The size of each data item that the queue holds is set when the queue

Is created. The memory pointed to by pvBuffer must be at least large
enough to hold that many bytes.

H omputer System Design Lab

17

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,

const void * pvBulifer,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked
state to wait for data to become available on the queue, should the

queue already be empty.

If xTicksToWatt is zero, then xQueueReceive() will return immediately if

the queue is already empty.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait
indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set
to 1 in FreeRTOSConfig.h.

omputer System Design Lab

18

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,
const void * pvBulifer,
TickType_t xTicksToWait);

: “\"-«3{‘:5*
H omputer System Design Lab

19

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,
const void * pvBulifer,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked
state to wait for data to become available on the queue, should the
queue already be empty.

H omputer System Design Lab

20

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,
const void * pvBulifer,

TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked
state to wait for data to become available on the queue, should the

queue already be empty.

If xTicksToWatt is zero, then xQueueReceive() will return immediately if

the queue is already empty.

H omputer System Design Lab

21

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,

const void * pvBulifer,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked
state to wait for data to become available on the queue, should the

queue already be empty.

If xTicksToWatt is zero, then xQueueReceive() will return immediately if

the queue is already empty.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait
indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set
to 1 in FreeRTOSConfig.h.

omputer System Design Lab

22

Reading (Receiving) from the Queue

BaseType_t xQueueReceive (QueueHandle_t Xqueue,

const void * pvBulifer,
TickType_t xTicksToWait);

xTicksToWait The maximum amount of time the task should remain in the Blocked
state to wait for data to become available on the queue, should the

queue already be empty.

If xTicksToWatt is zero, then xQueueReceive() will return immediately if

the queue is already empty.

Setting xTicksToWait to portMAX_DELAY will cause the task to wait
indefinitely (without timing out) provided INCLUDE_vTaskSuspend is set
to 1 in FreeRTOSConfig.h.

omputer System Design Lab

23

Lets Play

Priorites = Low

~ “\‘.“‘;{-gf‘
H omputer System Design Lab

Priority = High

24

Lets Play

Priority = High

Priorites = Low

1. Receiver starts by reading and 1s blocked

‘ \‘\.“‘gg_i;f‘
H omputer System Design Lab

25

Lets Play

Priority = High

Priorites = Low

1. Receiver starts by reading and 1s blocked

2. Task 1 writes into Queue.....What happens ?

: “\"-«3{‘:5*
H omputer System Design Lab

26

Lets Play

Receiver

Sender2

Senderl

H omputer System Design Lab

27

Lets Play......

1- The Recelver task runs Nrst because i has the —
3 - The Recelver task emplies the queue
highest priority. It atiempts to read from the queue. The | | .\ o ters the Blocked state again. This

queue Is empty s0 the Recelver enters the Blocked state
to walt for data to become avallable. Sender 2 runs after m'l e?w'mmmmm‘mm

the Recelver has blocked.

!
Receiver |
i

Sender2i
Sender1§

t%/' Time ™

2 - Sender 2 wriies to the queue, causing the \
Recelver to exit the Blocked state. The 4 - Sender 1 writes 1o the queue, causing

Recelver has the highest priority 50 pre-empts the Recelver to exit the Blocked state and
Sender 2. 9 pre-empt Sender 1 -andsoltgoeson

.

SII omputer System Design Lab

28

Expanding a Little....

>(Controller)

Figure 34. An example scenario where structures are sent on a queue

Controller processing multiple input streams
Q: How to tell which entry 1s from what source ?

H omputer System Design Lab 29

Expanding a Little....

typedef struct
{
ID t eDatalD;
int32 t 1lDataValue;
} Data_t;

CAN bus
Task

Another Task { Controller)
ed

HMI Task

Figure 34. An example scenario where structures are sent on a queue

A: Use a struct with a key (1dentifier) with data

&
H omputer System Design Lab

30

Expanding a Little....

omputer System Design Lab

typedef struct
{
ID_t eDataID;
int32 t 1lDataValue;
} Data_t;

31

Expanding a Little....

typedef struct
{
ID_t eDataID;
int32 t 1lDataValue;
Data t;

/* Define an enumerated t used to identify the source of
typedef enum
{
eSenderl,
eSender?2
} DataSource t;

o 5)
H omputer System Design Lab

the data.

L4

32

Expanding a Little....

/* Define an enumerated type used
typedef enum
{
eSenderl,
eSender?2
} DataSource t;

/* Define the strugfure type that will be passed on the queue.

typedef struct
{

omputer System Design Lab

typedef struct
{
ID_t eDataID;
int32 t 1lDataValue;
} Data t;

0 identify the source of

the data.

x

L4

33

Expanding a Little....

typedef struct
{
ID_t eDataID;
int32 t 1lDataValue;
} Data t;

/* Define an enumerated type used to identify the source of
typedef enum
{
eSenderl,
eSender?2
} DataSource t;

the data.

/* Define the structure type that will be passed on the queue. */
typedef struct

{

}

uint8_t ucValue;
DataSource_t eDataSource;
Data t;

L4

/* Declare two variables of type Data t that will be passed on the queue.
static const Data t xStructsToSend[2] =

{

{ 100, eSenderl }, /* Used by Senderl. */
{ 200, eSender2 } /* Used by Sender2. */

omputer System Design Lab

X

34

Expanding a Little...sender....

static void vSenderTask(void *pvParameters)

{
BaseType t xStatus;
const TickType t xTicksToWait = pdMS TO TICKS(100);

/* As per most tasks, this task is implemented within an infinite loop. */
for(;;)
{

xStatus = xQueueSendToBack (xQueue, pvParameters, xTicksToWait) ;

if(xStatus !'= pdPASS)
{

/* The send operation could not complete, even after waiting for 100ms.
This must be an error as the receiving task should make space in the
queue as soon as both sending tasks are in the Blocked state. */
vPrintString("Could not send to the queue.\r\n");

o 5)
H omputer System Design Lab

35

Expanding a Little....receiver....

static void vReceiverTask(void *pvParameters)

{

/* Declare the structure that will hold the values received from the queue. */
Data_t xReceivedStructure;

BaseType_t xStatus;

/* This task is also defined within an infinite loop. */
for(;;)
{
if (uxQueueMessagesWaiting(xQueue) != 3)
{
vPrintString("Queue should have been full!\r\n");

}

/* Receive from the queue.

xStatus = xQueueReceive (xQueue, &xReceivedStructure, 0);

if (xStatus == pdPASS)

{
/* Data was successfully received from the queue, print out the received
value and the source of the value. */

if (xReceivedStructure.eDataSource == eSenderl)
{
vPrintStringAndNumber ("From Sender 1 = ", xReceivedStructure.ucValue)
}
else
{
vPrintStringAndNumber ("From Sender 2 = ", xReceivedStructure.ucValue)
}
}
else
{
/* Nothing was received from the queue. This must be an error as this

task should only run when the queue is full. */
vPrintString("Could not receive from the queue.\r\n");

Expanding a Little...main....

int main(void)

{

/* The queue is created to hold a maximum of 3 structures of type Data_t. */
xQueue = xQueueCreate(3, sizeof(Data_t));

if (xQueue '= NULL)
{

xTaskCreate(vSenderTask, "Senderl", 1000, &(xStructsToSend[0]), 2, NULL) ;
1), 2, NULL);

xTaskCreate (vSenderTask, "Sender2", 1000, &(xStructsToSend[1

/* Create the task that will read from the queue. The task is created with

priority 1, so below the priority of the sender tasks. */
xTaskCreate (vReceiverTask, "Receiver", 1000, NULL, 1, NULL);

/* Start the scheduler so the created tasks start executing. */
vTaskStartScheduler () ;

}
else
{
/* The queue could not be created. */

}

/* If all is well then main() will never reach here as the scheduler will
now be running the tasks. If main() does reach here then it is likely that
there was insufficient heap memory available for the idle task to be created.
Chapter 2 provides more information on heap memory management. */

for(;;)

‘I omputer System Design Lab

37

Execution in words....

Time Description

t1 Task Sender 1 executes and sends 3 data items to the queue.

M omputer System Design Lab

38

Execution in words....

Time Description
t1 Task Sender 1 executes and sends 3 data items to the queue.

t2 The queue is full so Sender 1 enters the Blocked state to wait for its next send to

complete. Task Sender 2 is now the highest priority task that is able to run, so enters

the Running state.

omputer System Design Lab 39

Execution in words....

Time Description

t1 Task Sender 1 executes and sends 3 data items to the queue.

t2 The queue is full so Sender 1 enters the Blocked state to wait for its next send to
complete. Task Sender 2 is now the highest priority task that is able to run, so enters
the Running state.

Task Sender 2 finds the queue is already full, so enters the Blocked state to wait for
its first send to complete. Task Receiver is now the highest priority task that is able to
run, so enters the Running state.

omputer System Design Lab

40

Execution in words....

Time

t1

t2

Description
Task Sender 1 executes and sends 3 data items to the queue.

The queue is full so Sender 1 enters the Blocked state to wait for its next send to
complete. Task Sender 2 is now the highest priority task that is able to run, so enters

the Running state.

Task Sender 2 finds the queue is already full, so enters the Blocked state to wait for
its first send to complete. Task Receiver is now the highest priority task that is able to
run, so enters the Running state.

Two tasks that have a priority higher than the receiving task’s priority are waiting for
space to become available on the queue, resulting in task Receiver being pre-empted

as soon as it has removed one item from the queue. Tasks Sender 1 and Sender 2

have the same priority, so the scheduler selects the task that has been waiting the

longest as the task that will enter the Running state—in this case that is task Sender
1.

omputer System Design Lab

41

Execution in words....

Time

t1

t2

Description
Task Sender 1 executes and sends 3 data items to the queue.

The queue is full so Sender 1 enters the Blocked state to wait for its next send to
complete. Task Sender 2 is now the highest priority task that is able to run, so enters

the Running state.

Task Sender 2 finds the queue is already full, so enters the Blocked state to wait for
its first send to complete. Task Receiver is now the highest priority task that is able to
run, so enters the Running state.

Two tasks that have a priority higher than the receiving task’s priority are waiting for
space to become available on the queue, resulting in task Receiver being pre-empted

as soon as it has removed one item from the queue. Tasks Sender 1 and Sender 2

have the same priority, so the scheduler selects the task that has been waiting the

longest as the task that will enter the Running state—in this case that is task Sender
1

Task Sender 1 sends another data item to the queue. There was only one space in

the queue, so task Sender 1 enters the Blocked state to wait for its next send to

complete. Task Receiver is again the highest priority task that is able to run so enters

the Running state.

Task Sender 1 has now sent four items to the queue, and task Sender 2 is still
waiting to send its first item to the queue.

omputer System Design Lab

42

Execution in words....

Time

t1

t2

Description
Task Sender 1 executes and sends 3 data items to the queue.

The queue is full so Sender 1 enters the Blocked state to wait for its next send to
complete. Task Sender 2 is now the highest priority task that is able to run, so enters

the Running state.

Task Sender 2 finds the queue is already full, so enters the Blocked state to wait for
its first send to complete. Task Receiver is now the highest priority task that is able to
run, so enters the Running state.

Two tasks that have a priority higher than the receiving task’s priority are waiting for
space to become available on the queue, resulting in task Receiver being pre-empted

as soon as it has removed one item from the queue. Tasks Sender 1 and Sender 2

have the same priority, so the scheduler selects the task that has been waiting the

longest as the task that will enter the Running state—in this case that is task Sender
1.

Task Sender 1 sends another data item to the queue. There was only one space in
the queue, so task Sender 1 enters the Blocked state to wait for its next send to
complete. Task Receiver is again the highest priority task that is able to run so enters
the Running state.

Task Sender 1 has now sent four items to the queue, and task Sender 2 is still
waiting to send its first item to the queue.

Two tasks that have a priority higher than the receiving task’s priority are waiting for
space to become available on the queue, so task Receiver is pre-empted as soon as
it has removed one item from the queue. This time Sender 2 has been waiting longer

than Sender 1, so Sender 2 enters the Running state.

omputer System Design Lab

43

Execution in words....

Time

t1

t2

Description
Task Sender 1 executes and sends 3 data items to the queue.

The queue is full so Sender 1 enters the Blocked state to wait for its next send to
complete. Task Sender 2 is now the highest priority task that is able to run, so enters

the Running state.

Task Sender 2 finds the queue is already full, so enters the Blocked state to wait for
its first send to complete. Task Receiver is now the highest priority task that is able to
run, so enters the Running state.

Two tasks that have a priority higher than the receiving task’s priority are waiting for
space to become available on the queue, resulting in task Receiver being pre-empted

as soon as it has removed one item from the queue. Tasks Sender 1 and Sender 2

have the same priority, so the scheduler selects the task that has been waiting the

longest as the task that will enter the Running state—in this case that is task Sender
1

Task Sender 1 sends another data item to the queue. There was only one space in

the queue, so task Sender 1 enters the Blocked state to wait for its next send to

complete. Task Receiver is again the highest priority task that is able to run so enters

the Running state.

Task Sender 1 has now sent four items to the queue, and task Sender 2 is still
waiting to send its first item to the queue.

Two tasks that have a priority higher than the receiving task’s priority are waiting for
space to become available on the queue, so task Receiver is pre-empted as soon as
it has removed one item from the queue. This time Sender 2 has been waiting longer

than Sender 1, so Sender 2 enters the Running state.

Task Sender 2 sends a data item to the queue. There was only one space in the
queue so Sender 2 enters the Blocked state to wait for its next send to complete.
Both tasks Sender 1 and Sender 2 are waiting for space to become available on the

queue, so task Receiver is the only task that can enter the Running state.

omputer System Design Lab

44

Expanding a Little...Output....

.| G\Windows \system32\cmd.exe
C:\temp>Example®iil

Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender
Sender

Pk N ek N Bk IND o IND ok N ok D Bk N B END ek IND ek [N ek ek ek ek

| [[|| (| { { {{ { (O (| (O | Y O

188
1608
188
1808
2008
16008
280
168
2008
1808
2808
1808
288
1688
200
188
2808
188
2008
168
200
188
2008
188

Figure 35 The output produced by Example 11

omputer System Design Lab

45

Expanding a Little..sched sequence....

Receiver

Sender2§

Sender1f

12 tUt5617
3

Figure 36. The sequence of execution produced by Example 11

H omputer System Design Lab

46

Mailboxes (Ch 4.7)

Winning
Lotto Ticket

Information 1s put in and removed from a Queue

H omputer System Design Lab

47

Mailboxes (Ch 4.7)

Winning
Lotto Ticket

Information 1s put in and removed from a Queue

H omputer System Design Lab

48

Mailboxes (Ch 4.7)

Winning
Lotto Ticket

Information 1s put in and removed from a Queue

H omputer System Design Lab

49

Mailboxes (Ch 4.7)

Mailbox = Queue of length 1

Winning
Lotto Ticket

Information is put in Queue

N e
aanaa
“ﬂﬂﬂlﬁﬂﬁ omputer System Design Lab

50

Mailboxes (Ch 4.7)

Mailbox = Queue of length 1

Winning
Lotto Ticket

Information is put in Queue

omputer System Design Lab

51

Mailboxes (Ch 4.7)

ol 1 omputer System Design Lab

Mailbox = Queue of length 1

Winning Winning
Lotto Ticket Lotto Ticket

Information 1s put in Queue: Copied Out by a Reader but remains
In Queue (Mailbox):
3¢

52

Mailboxes (Ch 4.7)

Mailbox = Queue of length 1

Winning
Lotto Ticket

Winning _ Winning
Lotto Ticket g Lotto Ticket

Information 1is put in Queue: Copied Out by a Reader but remains
In Queue (Mailbox): and Read by Multiple Readers !

: gt
M omputer System Design Lab

Mailboxes (Ch 4.7)

Mailbox = Queue of length 1

Winning
Lotto Ticket

P_|c3r kking Winning . Winning
cKe |/ Lotto Ticket g Lotto Ticket

Information 1is put in Queue: Copied Out by a Reader but remains
In Queue (Mailbox): and Read by Multiple Readers !

: gt
H omputer System Design Lab

Mailboxes (Ch 4.7)

Mailbox = Queue of length 1

Winning
Lotto Ticket

- Winning
g Lotto Ticket

Information 1is put in Queue: Copied Out by a Reader but remains
In Queue (Mailbox): and Read by Multiple Readers ! : Until Overwritt¢n

: gt
H omputer System Design Lab

55

Mailboxes (Ch 4.7)

ﬂKﬂﬂSJI ‘ omputer System Design Lab

/* A mailbox can hold a fixed size data item. The size of the data item is set

when the mailbox (queue) is created. In this example the mailbox is created to
hold an Example_t structure. Example t includes a time stamp to allow the data held
in the mailbox to note the time at which the mailbox was last updated. The time
stamp used in this example is for demonstration purposes only - a mailbox can hold
any data the application writer wants, and the data does not need to include a time
stamp. */

typedef struct xExampleStructure

{

TickType_ t xTimeStamp;
uint32_t ulValue;
} Example_ t;

/* A mailbox is a queue, so its handle is stored in a variable of type
QueueHandle_t. */
QueueHandle_t xMailbox;

void vAFunction(void)

{
/* Create the queue that is going to be used as a mailbox. The queue has a
length of 1 to allow it to be used with the xQueueOverwrite () API function, which
is described below. */
xMailbox = xQueueCreate(1, sizeof(Example_t):):

56

Mailboxes (Ch 4.7)

BaseType t xQueueOverwrite (QueueHandle t xQueue,

const void * pvItemToQueue) ;

Unlike xQueueSendToBack(), if the queue is already full,
then xQueueOverwrite() will overwrite data that is already in the queue.

xQueueOverwrite() should only be used with queues that have a length
of one. That restriction avoids the need for the function’s implementation

to make an arbitrary decision as to which item in the queue to overwrite,
if the queue is full.

H omputer System Design Lab

57

Mailboxes (Ch 4.7)

void vUpdateMailbox(uint32 t ulNewValue)

{
/* Example t was defined in Listing 67. */
Example t xData;

/* Write the new data into the Example t structure.*/
xData.ulValue = ulNewValue;

/* Use the RTOS tick count as the time stamp stored in the Example t structure. */
xData.xTimeStamp = xTaskGetTickCount() ;

/* Send the structure to the mailbox - overwriting any data that is already in the
mailbox. */
XQueueOverwrite(xMailbox, &xData) ;

BaseType t xQueuePeek (QueueHandle t xQueue,
void * const pvBuffer,
TickType t xTicksToWait) ;

o 5)
N omputer System Design Lab

58

Mailboxes (Ch 4.7)

BaseType t xQueuePeek (QueueHandle t xQueue,
void * const pvBuffer,
TickType t xTicksToWait);

xQueuePeek() is used to receive (read) an item from a queue
without the item being removed from the queue.

” omputer System Design Lab

59

Mailboxes (Ch 4.7)

BaseType t vReadMailbox(Example t *pxData)
{
TickType_ t xPreviousTimeStamp;
BaseType_ t xDataUpdated;

omputer System Design Lab

/* This function updates an Example_t structure with the latest value received
from the mailbox. Record the time stamp already contained in *pxData before it
gets overwritten by the new data. */

xPreviousTimeStamp = pxData->xTimeStamp;

/* Update the Example_t structure pointed to by pxData with the data contained in
the mailbox. If xQueueReceive () was used here then the mailbox would be left
empty, and the data could not then be read by any other tasks. Using
xXQueuePeek () instead of xQueueReceive () ensures the data remains in the mailbox.
A block time is specified, so the calling task will be placed in the Blocked
state to wait for the mailbox to contain data should the mailbox be empty. An
infinite block time is used, so it is not necessary to check the value returned
from xQueuePeek (), as xQueuePeek () will only return when data is available. */
xQueuePeek (xMailbox, pxData, portMAX DELAY)

/* Return pdTRUE if the value read from the mailbox has been updated since this
function was last called. Otherwise return pdFALSE. */
if (pxData->xTimeStamp > xPreviousTimeStamp)
{
xDataUpdated PATRUE ;
}
else
{
xDataUpdated pdFALSE;

}

return xDataUpdated;

60

