
Pointers!Pointers!

Explicit Memory
Access & Management

By Jason Agron



VariablesVariables

• Variables are heavily used constructs in any
programming language.

• Variables are often “nicknames” of storage
locations:
• Registers or memory locations.

• Who cares where variables are stored?
• Usually, not the programmer.

• It can be handled solely by the compiler.



Example: Variable ReferencingExample: Variable Referencing

• Original Source:
int x = 0;
int y = 1;
x = x + 3;
y = x + y;

• Assume…
• Compiler chooses variable

locations.
• Address of x = 0x0A.
• Address of y = 0xFF.

• Program and Associated Actions:
• int x = 0;

• Mem[0x0A] = 0x00000000
• int y = 1;

• Mem[0xFF] = 0x00000001
• x = x + 3;

• R12 = Mem[0x0A]
• R12 = R12 + 3
• Mem[0x0A] = R12

• y = x + y;
• R13 = Mem[0xFF]
• R13 = R12 + R13
• Mem[0xFF] = R13



“Fixed” Variables“Fixed” Variables

• Variables in a user’s program can usually be
put anywhere.

• But what about variables (data) that
corresponds to fixed devices?
• i.e. hardware devices.

• These variables have fixed addresses.
• How does one read variables at a fixed

address?



Pointers!Pointers!

• Pointers are programming constructs:
• They provide the idea of “indirection”.
• They are merely variables which are used to

access other places.
• All pointers have the following:

• The “address” that the pointer “points to”.
• The “data” that is being pointed at.



Pointers Vs. VariablesPointers Vs. Variables

• In the previous example…
• Variable names were merely “nicknames” for

addresses.
• Memory location 0x0A was named ‘x’.
• Memory location 0xFF was named ‘y’.

• The value stored at the memory location is data.
• Pointers work a bit differently.

• They too are nicknames for a memory location.
• The value stored in that memory location is an

address, not data!



Example - Pointer Vs. VariableExample - Pointer Vs. Variable



Features of Pointers (1)Features of Pointers (1)

• The “value” of a pointer is the address that it
points to.
• int *myPtr = <ADDRESS_TO_POINT_TO>;

• The “type” in front specifies what type of data you
are pointing at.
• Important!!
• Integers are 32-bit (4 bytes), Chars are 8-bit (1 byte)…

• To get the address pointed to…
• <addressPointedTo> = myPtr;

• To set the address pointed to…
• myPtr = <newAddressPointedTo>;



Features of Pointers (2)Features of Pointers (2)

• To get the “data” that is pointed to, the pointer
must be dereferenced.
• This is done using the ‘*’ operator.

• To read the data being pointed to…
• <dataPointedTo> = *myPtr;

• To write the data being pointed to…
• *myPtr = <newData>;



Address-Of OperatorAddress-Of Operator

• The ‘&’ operator is used to calculate the
address of a variable.

• In our first example…
• &x would return 0x0A.
• &y would return 0xFF.

• This is how pass-by-reference works!
• You don’t pass the value.
• Instead you pass a “reference” (address) to

where the value is located.



Example: Use CaseExample: Use Case

• There is a hardware device with three 32-bit
registers attached to the system bus.
• Base address of the device is 0x40000000.
• Reg0 = base + 0x0.
• Reg1 = base + 0x4.
• Reg2 = base + 0x8.
• Registers are readable and writable.

• Why are the register addresses each
separated by 0x4??



Accessing the Registers (1)Accessing the Registers (1)

• First declare pointers to access the registers:
• volatile int *reg0 = (int *)(0x40000000);
• volatile int *reg1 = (int *)(0x40000004);
• volatile int *reg2 = (int *)(0x40000008);

• The ‘volatile’ keyword tells the compiler:
• Variable cannot be stored in on-CPU registers.
• Because it can be modified by “external” processes.

• Forces the compiler to produce code that always
does bus transactions to write/read such variables.
• EXCEPT if caching is enabled!!!!!



Accessing the Registers (2)Accessing the Registers (2)

• Now let’s write/read the variables…
• Put values in reg0, reg1, and reg2…

• *reg0 = 15678;
• *reg1 = 1 + 3;
• *reg2 = -99;

• Read values from registers…
• *reg2 = (*reg1 + 10) / (*reg2);

• Now you are interacting with the data stored in the
device’s registers!!


