
Computer System Design Lab 1

CSCE 4114
Uartlite

David Andrews
dandrews@uark.edu

Computer System Design Lab 2

Uartlite
•  Soft IP version of a UART

16-character transmit and receive FIFO’s
Configurable number of data bits (5-8)
Configurable Parity
Configurable Baud Rate

Computer System Design Lab 3

Uartlite
•  Programmers View

Computer System Design Lab 4

Uartlite
•  Transmit/Receive bytes
•  Tx/Rx Channels are 16 Deep FIFO’s.

Why ?

Computer System Design Lab 5

Uartlite: Control Register

•  Enable Intr: 1=Enabled, 0=Disabled
•  Rst Tx FIFO: 1=Reset, 0=nothing
•  Rst Rx FIFO: 1=Reset, 0=nothing

Computer System Design Lab 6

Uartlite: Control Register

Int mask = ox?
*cntrl_reg &= mask;
 to Disable Interrupts, reset receive FIFO

Computer System Design Lab 7

Uartlite: Status Register

Errors: Parity, Frame, Overrun
Status: intr enabled,Tx,Rx FIFO’s

Computer System Design Lab 8

Uartlite: Status Register

Parity Error: Does not match parity

Computer System Design Lab 9

Uartlite: Status Register

Frame Error: “0” Detected in stop bit
position

Computer System Design Lab 10

Uartlite: Status Register

Overrun Error: Rx buffer full when new
transmission received

Computer System Design Lab 11

Uartlite: Status Register

Overrun Error: Rx buffer full when new
transmission received

 Last transmission is lost !

Computer System Design Lab 12

Uartlite: Status Register

Tx FIFO Full: No room left for another
transmission character !
 you routinely check this before transmitting

Computer System Design Lab 13

Uartlite: Status Register

Tx FIFO Empty: All Characters sent !
Tells you everything has been received. How

about received correctly ?

Computer System Design Lab 14

Uartlite: Status Register

Rx FIFO Full: No more room in your buffer.
Need to read data to avoid overrun errors !

Computer System Design Lab 15

Uartlite: Status Register

Rx FIFO Valid Data: Data is there and ready !
Can keep reading until Flag==0: -> you have read

everything that is waiting

Computer System Design Lab 16

some addresses/bit masks
Important memory offsets (in decimal):
UART_RX_FIFO offset is 0 (Used to read Rx_FIFO values, read-only
UART_TX_FIFO offset is 4 (Used to write Tx_FIFO values, write only
UART_STATUS_REG offset is 8 (Used to check UART status, read only)
UART_CONTROL_REG offset is 12 (Used to configure UART, write-only)

Computer System Design Lab 17

some addresses/bit masks
Important memory offsets (in decimal):
UART_RX_FIFO offset is 0 Used to read Rx_FIFO values, read-only
UART_TX_FIFO offset is 4 Used to write Tx_FIFO values, write only
UART_STATUS_REG offset is 8 Used to check UART status, read only
UART_CONTROL_REG offset is 12 Used to configure UART, write-only

Important bit-masks (in decimal):
TX_FIFO_FULL 8 Used to check if the Tx_FIFO is full
TX_FIFO_EMPTY 4 Used to check if the Tx_FIFO is empty
RX_FIFO_FULL 2 Used to check if the Rx_FIFO is full
RX_FIFO_VALID 1 Used to check if the Rx_FIFO has data

Computer System Design Lab 18

How do I send information ?
1) Wait for Tx_FIFO status to be NOT FULL
2) Write character to Tx_FIFO

Computer System Design Lab 19

How do I send information ?
1) Wait for Tx_FIFO status to be NOT FULL
2) Write character to Tx_FIFO

•  You write the pseudo C code……..

Computer System Design Lab 20

How do I send information ?
1) Wait for Tx_FIFO status to be NOT FULL
2) Write character to Tx_FIFO

•  pseudo C code……..

while (UART_STATUS == TX_FIFO_FULL) { };
 TX_FIFO = my_char;

Computer System Design Lab 21

Assembler….

Computer System Design Lab 22

Assembler….
.set UART_base, 1080033280 /* 0x40600000 */

Computer System Design Lab 23

Assembler….
.set UART_base, 1080033280 /* 0x40600000 */

Put UART's base address into r6
 addik r6, r0, UART_base

Computer System Design Lab 24

Assembler….
.set UART_base, 1080033280 /* 0x40600000 */

Put UART's base address into r6
 addik r6, r0, UART_base

Move character (byte) into r8 from character parameter (r5)
addik r8, r5, 0

Computer System Design Lab 25

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

Computer System Design Lab 26

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Computer System Design Lab 27

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Wait until UART's TX FIFO is not full
myPrintCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Computer System Design Lab 28

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Wait until UART's TX FIFO is not full
myPrintCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Base addr of uart already in r6

Computer System Design Lab 29

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Wait until UART's TX FIFO is not full
myPrintCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Mask out the TX_FIFO_FLAG
andi r7, r7, TX_FIFO_FULL

Computer System Design Lab 30

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Wait until UART's TX FIFO is not full
myPrintCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Mask out the TX_FIFO_FLAG
andi r7, r7, TX_FIFO_FULL

Checks only Tx_FIFO_Full Flag

Computer System Design Lab 31

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Wait until UART's TX FIFO is not full
myPrintCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Mask out the TX_FIFO_FLAG
andi r7, r7, TX_FIFO_FULL

Loop back if it is not-zero
bnei r7 myPrintCharLoop

 nop

Computer System Design Lab 32

Assembler….
1)  Wait for Tx_FIFO status to be NOT FULL

.set TX_FIFO_FULL, 8 /* Bit-mask for checking FIFO fullness */

Wait until UART's TX FIFO is not full
myPrintCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Mask out the TX_FIFO_FLAG
andi r7, r7, TX_FIFO_FULL

Loop back if it is not-zero
bnei r7 myPrintCharLoop

 nop

Computer System Design Lab 33

Assembler….
2) Send Character

.set UART_TX_FIFO_OFFSET, 4 /* transmit FIFO, write only */
.

Computer System Design Lab 34

Assembler….
2) Send Character

.set UART_TX_FIFO_OFFSET, 4 /* transmit FIFO, write only */

Send character to the FIFO
 swi r8, r6, UART_TX_FIFO_OFFSET

.

Computer System Design Lab 35

How do I receive ?
1)  Wait for Rx_FIFO status to be VALID
2) Read a character from the Rx_FIFO

•  Pseudo code………..

Computer System Design Lab 36

How do I receive ?
1) Wait for Rx_FIFO status to be VALID
2) Read a character from the Rx_FIFO

•  Pseudo code………..

while (UART_STATUS !=RX_FIFO_VALID) { };
 my_char = RX_FIFO;

Computer System Design Lab 37

Assembler
1) Wait for Rx_FIFO status to be VALID

Computer System Design Lab 38

Assembler
1) Wait for Rx_FIFO status to be VALID

Put UART's base address into r6
 addik r6, r0, UART_base

Computer System Design Lab 39

Assembler
1) Wait for Rx_FIFO status to be VALID

Put UART's base address into r6
 addik r6, r0, UART_base

Wait until UART's RX FIFO is not empty
myGetCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

Computer System Design Lab 40

Assembler
1) Wait for Rx_FIFO status to be VALID

Put UART's base address into r6
 addik r6, r0, UART_base

Wait until UART's RX FIFO is not empty
myGetCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

 # Mask out the RX_FIFO_DATA_VALID_FLAG
 andi r7, r7, RX_FIFO_VALID

Computer System Design Lab 41

Assembler
1) Wait for Rx_FIFO status to be VALID

Put UART's base address into r6
 addik r6, r0, UART_base

Wait until UART's RX FIFO is not empty
myGetCharLoop:

lwi r7, r6, UART_STATUS_REG_OFFSET

 # Mask out the RX_FIFO_DATA_VALID_FLAG
 andi r7, r7, RX_FIFO_VALID

 # Loop back if it is zero
 beqi r7 myGetCharLoop
 nop

Computer System Design Lab 42

Assembler
2) Get Character

Computer System Design Lab 43

Assembler
2) Get Character

Loop is over

Get character from the RX-FIFO
 lwi r5, r6, UART_RX_FIFO_OFFSET

