
Computer System Design Lab 1

CSCE 4114
I/O, I/O….its off the chip I go!

Serial and Parallel I/O

David Andrews
dandrews@uark.edu

mailto:dandrews@ittc.ku.edu

Computer System Design Lab 2

Serial/Parallel I/O
How do we interface external signals/data into
Computer ?

Intel 8255 Programmable Peripheral Interface (PPI)
Motorola 6820 Peripheral Interface Adapter (PIA)

Standard chips that provided general-purpose I/O lines
and control lines for handshaking to external devices.
Programmability allows different numbers of I/O lines
to be set as either inputs or outputs depending on
needs.

Computer System Design Lab 3

Arty-7 I/O

LEDs Slide Switches Buttons

Pmod Connectors

Computer System Design Lab 4

GPIO Connections

Computer System Design Lab 5

GPIO: General Purpose Input/Output Core

• Provides all signals/connections to AXI bus
– AXI (A)dvanced e(X)tensible (I)nterface
– Part of ARM Advanced Microcontroller Bus Arch

(AMBA)
• Can Have 1 or 2 Channels of 32 bits each
• Each bit can be configured as input/output

Computer System Design Lab 6

Schematic (Hardware Perspective)

Computer System Design Lab 7

Registers (Programmers Perspective)

• GPIO_TRI := sets up direction and use of Tri-
State
• 0 := write (output) (also turns on tristate connections)
• 1 := read (input) (disables tristate connections)

– Tri-state or dedicated input/output pins set during
system build

Computer System Design Lab 8

Data Port
• GPIOx_Data := Port for Data

• If a bit configured as Output:
– Writing to it will output the data
– Bit cannot be read

• If a bit configured as Input
– Reading will bring in value
– Writing to it won’t do anything

Computer System Design Lab 9

Example Code Use
/* Push buttons are used to control the on-board LEDs. */
// Direction Masks
#define outputDir 0x00000000 // All output bits
#define inputDir 0x0000001F // 5-input bits

int main()
{
// Pointer defintions for Button GPIO
// ** NOTE - integer definition causes
// offsets to be automatically be multiplied by 4!!
volatile int *base_buttonGPIO = (int*)(0x40040000);
volatile int *data_buttonGPIO = (int*)(base_buttonGPIO + 0x0);
volatile int *tri_buttonGPIO = (int*)(base_buttonGPIO + 0x1);

// Pointer defintions for LED GPIO
// ** NOTE - integer definition causes
// offsets to be automatically be multiplied by 4!!
volatile int *base_ledGPIO = (int*)(0x40000000);
volatile int *data_ledGPIO = (int*)(base_ledGPIO + 0x0);
volatile int *tri_ledGPIO = (int*)(base_ledGPIO + 0x1);

Computer System Design Lab 10

// Variable used to store the state of the buttons
int data = 0;

// Init. the LED peripheral to outputs
print("Init. LED GPIO Data Direction...\r\n");
*tri_ledGPIO = outputDir;

// Init. the Button peripheral to inputs
print("Init. Button GPIO Data Direction...\r\n");
*tri_buttonGPIO = inputDir;

// Infinitely Loop...
while(1)
{ // Read the current state of the push buttons

data = *data_buttonGPIO;
xil_printf("buttonState = %d\r\n",data);

// Set the state of the LEDs
*data_ledGPIO = data; }

return 0;
}

