
Computer System Design Lab 1

CSCE 4114
bit twiddling (bashing) in C

David Andrews
dandrews@uark.edu

mailto:dandrews@ittc.ku.edu

Computer System Design Lab 2

Bit Twiddling in C
• Lecture will not cover common

programming constructs and abstract
data structures. The semantics are the
same as you learned in PFI and PFII.

• If you are not familiar with C or C++
syntax many good general reviews are
available online.

• We will cover the bit manipulation
operations that are common and
convenient for programming embedded
systems.

Computer System Design Lab 3

Bit Twiddling in C
• C was developed for writing operating

systems, it is close to the machine.
• Which OS was it created for and used to write ?

• Can Address specific memory locations
• Can move data between memory and registers
• Can declare register variables

• Basic data types of machine
• Based on original Data Types of Target Mainframe
• Needed for OS interactions with device’s registers

• Operators included to manipulate single
bits within these data types

Computer System Design Lab 4

Data Types

From Vahid Programming Embedded Systems Zybook

Computer System Design Lab 5

Bit Manipulation
• C has standard bit-manipulation operators.

& Bit-wise AND
| Bit-wise OR a |= 0x4; /* Set bit 2 */
^ Bit-wise XOR d ^= (1 << 5); /* Toggle bit 5 */
~ Negate (one’s comp)
>> Right-shift g <<= 2; /* Multiply g by 4 */
<< Left-shift e >>= 2; /* Divide e by 4 */

What do these do ?
b &= ~0x4;
c &= ~(1 << 3);

Computer System Design Lab 6

Bit Manipulation
• C has standard bit-manipulation operators.

& Bit-wise AND
| Bit-wise OR a |= 0x4; /* Set bit 2 */
^ Bit-wise XOR d ^= (1 << 5); /* Toggle bit 5 */
~ Negate (one’s comp)
>> Right-shift g <<= 2; /* Multiply g by 4 */
<< Left-shift e >>= 2; /* Divide e by 4 */

What do these do ?
b &= ~0x4; /* Clear bit 2 */
c &= ~(1 << 3); /* Clear bit 3 */

Computer System Design Lab 7

Example Usage

• Suppose you have a Control Register that sets
directions for 8 input/output devices

• 1 := input
• 0 := output
• Device is already configured, and you want to check

device #2.
• Write down the code in C………….

i/oi/oi/oi/oi/oi/oi/oi/obase_addr = 0x00000400

Computer System Design Lab 8

Example Usage

• Suppose you have a Control Register that sets
directions for 8 input/output devices

• 1 := input
• 0 := output
• Device is already configured, and you want to check

device #2.

i/oi/oi/oi/oi/oi/oi/oi/obase_addr = 0x00000400

int mask = 0x4; /* 00000100 */
A = *base_addr & mask; /*A only has bit 2 */

Computer System Design Lab 9

Ternary Operator
if-then-else style:
int a = 10, b = 20, c;

if (a < b) {
c = a;

}
else {

c = b;
}

Ternary Operator
int a = 10, b = 20, c;

c = (a < b) ? a : b

Computer System Design Lab 10

Ternary Operator
Write a function using the ternary operator to set the
kth bit of a word to either {0, 1}.
// x: 8-bit value.
//k: bit position to set, range is 0-7.
// b: set bit to this, either 1 or 0
unsigned char SetBit(
unsigned char x, unsigned char k, unsigned char b)

Computer System Design Lab 11

Ternary Operator
Write a function using the ternary operator to set the
kth bit of a word to either {0, 1}.
// x: 8-bit value.
//k: bit position to set, range is 0-7.
// b: set bit to this, either 1 or 0
unsigned char SetBit(
unsigned char x, unsigned char k, unsigned char b)

{ return (b ? (x | (0x01 << k)) : (x & ~(0x01 << k))); }

Computer System Design Lab 12

Ternary Operator
Write a function using the ternary operator that
returns the value of the kth bit in an 8-bit word.
// x: 8-bit value.
//k: bit position to set, range is 0-7.

Computer System Design Lab 13

Ternary Operator
Write a function using the ternary operator that
returns the value of the kth bit in an 8-bit word.
// x: 8-bit value.
//k: bit position to set, range is 0-7.

unsigned char GetBit(unsigned char x, unsigned char k)
{ return ((x & (0x01 << k)) != 0); }

