
Computer System Design Lab 1

CSCE 4114
(Real Time) Operating Systems

David Andrews
dandrews@uark.edu

mailto:dandrews@ittc.ku.edu

Computer System Design Lab 2

Operating Systems
• Originally developed to ease sharing of

resources between users and foster
portability
• Early programming involved developing program

specifically for a machine
• Programs had to be re-written for each new machine.

• An OS is a “Virtual Machine”
• Machine capabilities accessed through API’s
• User’s code to API not machine specific registers,

protocols, addresses, etc.
• Specific implementations of API’s provided through

libraries
– Libraries linked into source code

Computer System Design Lab 3

Operating System Objectives
• Multi-user - A multi-user operating system

enables multiple users to use the same computer
at the same time and different times.

Computer System Design Lab 4

Operating System Objectives
• Multi-user - A multi-user operating system

enables multiple users to use the same computer
at the same time and different times.

• Multiprocessing - An operating system capable
of supporting and utilizing more than one
computer processor.

Computer System Design Lab 5

Operating System Objectives
• Multi-user - A multi-user operating system

enables multiple users to use the same computer
at the same time and different times.

• Multiprocessing - An operating system capable
of supporting and utilizing more than one
computer processor.

• Multitasking - An operating system that is
capable of allowing multiple software processes
to run at the same time.

Computer System Design Lab 6

Operating System Objectives
• Multi-user - A multi-user operating system

enables multiple users to use the same computer
at the same time and different times.

• Multiprocessing - An operating system capable
of supporting and utilizing more than one
computer processor.

• Multitasking - An operating system that is
capable of allowing multiple software processes
to run at the same time.

• Multithreading - Operating systems that allow
different parts of a software program to run
concurrently.

Computer System Design Lab 7

Operating System Objectives
• Multi-user - A multi-user operating system

enables multiple users to use the same computer
at the same time and different times.

• Multiprocessing - An operating system capable
of supporting and utilizing more than one
computer processor.

• Multitasking - An operating system that is
capable of allowing multiple software processes
to run at the same time.

• Multithreading - Operating systems that allow
different parts of a software program to run
concurrently.

Our Interest in this class

Computer System Design Lab 8

Real Time Operating Systems
• Real-time OS: a multitasking[/multithreading]

operating system for executing real-time
applications.
• Use specialized scheduling algorithms to deliver deterministic

behavior.
• Latency Considerations instead of throughput drives design.

Sometimes miss-interpreted as “fast”.
• Typically modeled as event-driven: responds to change’s in external

environment such as input sensors
• Event-driven system switches between tasks based on their

priorities or external events while time-sharing operating systems
switch tasks based on clock interrupts.

From: http://en.wikipedia.org/wiki/Operating_system

Computer System Design Lab 9

Embedded Operating Systems
• Embedded OS: Designed to operate on small

machines like PDAs with less autonomy. They are
able to operate with a limited number of
resources. They are very compact and
extremely efficient by design.
• Small footprints
• Scaled back capabilities

– Virtual Memory Support

Computer System Design Lab 10

Operating System Services
• Program Management

• Scheduling

• Timer Services
• Date/Time
• Watchdog Timers

• Synchronization/Communications
• File Services
• Networking
• Security

Computer System Design Lab 11

Scheduling
Task State
• 1 – has CPU

executing

Computer System Design Lab 12

Scheduling
Task State
• 1 – has CPU
• No Longer Has CPU: Why ?
• Gets Preempted

executing

ready

preempted

Computer System Design Lab 13

Scheduling
Task State
• 1 – has CPU
• No Longer Has CPU: Why ?
• Gets Preempted
• Still can run if possible

executing

ready

preemptedgets
CPU

Computer System Design Lab 14

Scheduling
Task State
• 1 – has CPU
• No Longer Has CPU: Why ?
• Gets Preempted
• Needs to Wait on some

resource
-semaphore
-I/O

executing

ready waiting

needs
resource

preemptedgets
CPU

Computer System Design Lab 15

Scheduling
Task State
• 1 – has CPU
• No Longer Has CPU: Why ?
• Gets Preempted
• Needs to Wait on some

resource
-semaphore
-I/O

• Gets Data and can now run

executing

ready waiting

needs
resource

gets resource

preemptedgets
CPU

Computer System Design Lab 16

Scheduling
Task State
• 1 – has CPU
• No Longer Has CPU: Why ?
• Gets Preempted
• Needs to Wait on some

resource
-semaphore
-I/O

• Gets Data and can now run

executing

ready waiting

needs
resource

gets resource

preemptedgets
CPU

Called suspend or blocked
Queue

Computer System Design Lab 17

Scheduling
Task State
• 1 – has CPU
• No Longer Has CPU: Why ?
• Gets Preempted
• Needs to Wait on some

resource
-semaphore
-I/O

• Gets Data and can now run

executing

ready waiting

needs
resource

gets resource

preemptedgets
CPU

Called Ready to Run (R2R)
Or scheduler Queue

Computer System Design Lab 18

Scheduling
• If multiple threads in

R2R Queue:
• How does OS make

scheduling decision?
executing

ready waiting

needs
resource

gets resource

preemptedgets
CPU

Called Ready to Run (R2R)
Or scheduler Queue

Computer System Design Lab 19

Scheduling
• If multiple threads in

R2R Queue:
• How does OS make

scheduling decision?
• When does OS make

scheduling decision ?

executing

ready waiting

needs
resource

gets resource

preemptedgets
CPU

Called Ready to Run (R2R)
Or scheduler Queue

Computer System Design Lab 20

RT- Scheduling Algorithms
• Schedule multiple threads/tasks on

shared resource(s) such that they all
meet their deadlines…….

• Need to Know…
• Execution time of each task

– Study of Worst Case Execution Time
• Deadline of each task

– When all must be completed
• When can task begin to execute

– Periodic is simplest (aperiodic much more difficult)

Computer System Design Lab 21

A little theory….

time

Tperiod Tperiod

Computer System Design Lab 22

A little theory….

time

Tperiod Tperiod

Task will “start” at the beginning of it’s period

Computer System Design Lab 23

A little theory….

time

Tperiod Tperiod
Ctask Ctask

Computer System Design Lab 24

A little theory….

time

Tperiod Tperiod
Ctask Ctask

Ctask :A Task’s worst case execution time

Computer System Design Lab 25

A little theory….

time

Tperiod Tperiod

Tdeadline Tdeadline

Ctask Ctask

Computer System Design Lab 26

A little theory….

time

Tperiod Tperiod

Tdeadline Tdeadline

Ctask Ctask

Task must complete by it’s deadline Tdeadline

Computer System Design Lab 27

A little theory….

time

Tperiod Tperiod

Tdeadline Tdeadline

Ctask Ctask

Task must complete by it’s deadline Tdeadline

Simplify to makeTdeadline = end of period

Computer System Design Lab 28

RT- Scheduling Algorithms
• Priority based scheduling

• static priority;
– Priority set during design time
– Does not change during system operation

• Dynamic priorities
– Change as system runs

• Preemption/Non-Preemption
• Preemption: Task on CPU can get booted by higher

Priority Task ready to run
• Non-preemption: Task on CPUs keeping executing even

if higher priority task ready to run

Computer System Design Lab 29

© 2000 Morgan Kaufman Overhead for Computers as Components

Priority-driven scheduling example

• Rules:
• each process has a fixed priority (1 highest);
• highest-priority ready process gets CPU;
• process continues until done or wait state.

• Processes
• P1: priority 1, execution time 10
• P2: priority 2, execution time 30
• P3: priority 3, execution time 20

Computer System Design Lab 30

© 2000 Morgan Kaufman Overhead for Computers as Components

Priority-driven scheduling example

• Rules:
• each process has a fixed priority (1 highest);
• highest-priority ready process gets CPU;
• process continues until done or wait state.

• Processes
• P1: priority 1, execution time 10
• P2: priority 2, execution time 30 Ready at T0

• P3: priority 3, execution time 20

Computer System Design Lab 31

© 2000 Morgan Kaufman Overhead for Computers as Components

Priority-driven scheduling example

• Rules:
• each process has a fixed priority (1 highest);
• highest-priority ready process gets CPU;
• process continues until done or wait state.

• Processes
• P1: priority 1, execution time 10 Ready at T15

• P2: priority 2, execution time 30 Ready at T0

• P3: priority 3, execution time 20

Computer System Design Lab 32

© 2000 Morgan Kaufman Overhead for Computers as Components

Priority-driven scheduling example

• Rules:
• each process has a fixed priority (1 highest);
• highest-priority ready process gets CPU;
• process continues until done or wait state.

• Processes
• P1: priority 1, execution time 10 Ready at T15

• P2: priority 2, execution time 30 Ready at T0

• P3: priority 3, execution time 20 Ready at T18

Computer System Design Lab 33

© 2000 Morgan Kaufman Overheads for Computers as Components

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

Computer System Design Lab 34

© 2000 Morgan Kaufman Overheads for Computers as Components

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2

Wants to go for 30, but
preempted when P1 released !

Computer System Design Lab 35

© 2000 Morgan Kaufman Overheads for Computers as Components

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P1

Computer System Design Lab 36

© 2000 Morgan Kaufman Overheads for Computers as Components

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P1

Highest priority, so
Will run to completion

Computer System Design Lab 37

© 2000 Morgan Kaufman Overheads for Computers as Components

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1

P2 resumes and
completes

Computer System Design Lab 38

© 2000 Morgan Kaufman Overheads for Computers as Components

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3

P3 finally gets to run !

