
The Accelerator Wall: Limits of Chip Specialization
Adi Fuchs David Wentzlaff
Department of Electrical Engineering

Princeton University
{adif, wentzlaf}@princeton.edu

Abstract—Specializing chips using hardware accelerators has
become the prime means to alleviate the gap between the
growing computational demands and the stagnating transistor
budgets caused by the slowdown of CMOS scaling. Much of
the benefits of chip specialization stems from optimizing a
computational problem within a given chip’s transistor budget.
Unfortunately, the stagnation of the number of transistors
available on a chip will limit the accelerator design optimization
space, leading to diminishing specialization returns, ultimately
hitting an accelerator wall.

In this work, we tackle the question of what are the
limits of future accelerators and chip specialization? We do
this by characterizing how current accelerators depend on
CMOS scaling, based on a physical modeling tool that we
constructed using datasheets of thousands of chips. We identify
key concepts used in chip specialization, and explore case
studies to understand how specialization has progressed over
time in different applications and chip platforms (e.g., GPUs,
FPGAs, ASICs)1. Utilizing these insights, we build a model
which projects forward to see what future gains can and cannot
be enabled from chip specialization. A quantitative analysis of
specialization returns and technological boundaries is critical
to help researchers understand the limits of accelerators and
develop methods to surmount them.

Keywords-Accelerator Wall; Moore’s Law; CMOS Scaling

I. INTRODUCTION

The ubiquity of specialized chips in modern architectures
is motivated by a trisection of trends: (i) Power budget
limitations imposed by the nearing end of Moore’s law and
the demise of Dennard scaling. (ii) The growing computation
demands of applications in battery-limited mobile devices
and warehouse-scale datacenters. (iii) The emergence of
compute-intensive applications that exhibit high reuse rates
of computation-patterns such as matrix-vector multiplication
in deep learning applications or cryptographic hashing in
cryptocurrency miners. By sacrificing flexibility and targeting
specific application domains, specialized chips deliver higher
performance under the same power envelope. This trend has
driven the increasing use of specialized IP blocks in mobile
SoC platforms [1] and the deployment of accelerators in
datacenters [2]–[7].

Chip Specialization Caveats: Knowns and Unknowns.
Recent studies have explored ways to ameliorate shortcom-
ings of specialized architectures. Frequent algorithm changes
make targeted domains volatile and render specialized
hardware obsolete [8], and narrowed applicability reduces

1Our modeling tool and evaluated application data are available at:
https://github.com/PrincetonUniversity/accelerator-wall

12
-20

12

06
-20

13

12
-20

13

06
-20

14

12
-20

14

06
-20

15

12
-20

15

06
-20

16

Introduction Date

1×

10×

100×

1000×

Re
la

tiv
e

Pe
rfo

rm
an

ce
(N

or
m

al
ize

d
to

 1
30

nm
 A

SI
C)

30
7.

4×
1.

7×

Transistor
Performance65nm

55nm

40nm 28nm
16nm

Performance Chip-Specialization Return

Figure 1: Evolution of Bitcoin Mining ASIC Chips. Perfor-
mance metric is SHA256 Hashing Throughput per Chip Area
(Hashes/Seconds/mm2).

the profitability of non-programmable ASIC production due
to non-recurring engineering costs [9].

While the aforementioned shortcomings stem from the
tradeoff between efficiency and applicability, in this work
we focus on the limitations imposed by applying chip
specialization. Specialization relies on the optimization of
hardware to a computation domain, subject to a given
budget of power, area, and cost. Specialization has become a
prominent means to prolong the evolution of chip capabilities
amid the dwindling increase in transistor budget and power
limitations due to the demise of CMOS scaling [10,11].

Unfortunately, the optimization space for specializing a
single application is limited; there are a finite number of
ways to map computational problems to fixed chip resources,
and therefore, limits to the attainable chip returns for a given
domain and budget. As the nearing end of CMOS scaling
will cap chip transistor budgets, optimization will eventually
deliver diminishing returns, and accelerators will reach a
limit of near-optimal compute and hardware co-optimization.
We term this limit the accelerator wall.

In this work, we conduct a study on the theoretical and
empirical limits of chip specialization. Understanding these
limits is the first step needed for academia and industry
to create novel solutions to surmount the accelerator wall.
Our paper begins with developing a methodology that
quantifies the benefits of chip specialization. We then build
a model for a chip’s physical potential using datasheets
of thousands of manufactured chips. The potential model
enables us to tease apart the end-to-end chip gains that come
from advances in physical chip capabilities (e.g., CMOS
technology advancements) versus the CMOS-independent
benefits of optimizing a chip under a given budget. We name
this CMOS-independent metric the Chip Specialization
Return (CSR) of a design.

Application

Algorithm

Prog. Language

Operating System

ISA

RTL

Gate Level

Devices

Technology

Programming Framework

Accelerator Platform

Computation Domain (Fixed)

Chip Engineering

Physical Properties
45nm CMOS

100mm2 Die

Traditional Accelerator-Centric Examples

Algorithm

Microarchitecture

Circuits

Design Methodologies

CAD Tools

ASIC

FPGA

HLS

CUDA

AlexNet, VGG, LSTM

BFS, PageRank

Deep Learning

Graph Processing

SPECIALIZATION STACK

Figure 2: Abstraction Layers: Traditional and Accelerated
Systems. Dashed Box Groups The Layers of Specialization.

As a motivating example of how chip specialization
progresses as applications are better understood over time,
we examine the performance and CSR (how good of a job the
designer did to use the transistors given) for Bitcoin mining
ASIC chips as a function of time in Figure 1. Transistor
performance is derived from the CMOS potential of evaluated
chips (e.g., transistor count, CMOS speed), and the CSR
is the ratio of performance/transistor performance. While
performance has improved by 510×, it was mainly due to
a 307× improvement in transistor performance, i.e., better
physical capabilities. Furthermore, the figure shows that CSR
did not improve in the last two years.

We present multiple case studies to quantify the benefits
of different specialization techniques and understand how
specialization varies across different implementation plat-
forms (e.g., GPUs, FPGAs, ASICs). We examine common
concepts used for chip specialization, and their theoretical
limits. Utilizing Aladdin [12] and our physical chip model,
we conduct a design space exploration of specialization
concepts to approximate CSR for a variety of applications.
Finally, building upon the past knowledge of how CSR has
progressed and how physical chip capabilities will progress
until CMOS scaling ends, we build a model to project forward
and explore possible future chips, quantitatively predicting
the limits imposed by the accelerator wall.

Our contributions in detail include:
• We use CMOS scaling equations and datasheets

from thousands of chips to construct an application-
independent CMOS potential model of a chip. We use
this model to decouple the contributions of CMOS
technology and specialization to accelerator gains.

• We develop the metric of Chip Specialization Return
(CSR) and examine popular applications and different
accelerator platforms (GPU, FPGA, and ASIC) to
quantify how CSR has changed in accordance to the
improvement in accelerator gains.

• We identify commonly used chip specialization tech-
niques and their theoretical limitations.

• We build a modeling framework based on Aladdin [12]
and CMOS equations, to tease apart the gains from
specialization techniques and CMOS scaling, on a range
of accelerator benchmarks [13]–[15].

• We perform a Pareto-optimal projection study for
the evaluated applications, and predict the limit of
accelerator potential at the end of transistor scaling.

II. THE INTERPLAY OF CMOS SCALING AND CHIP
SPECIALIZATION RETURN

The Case For Specialization-Driven Roadmaps: While
CMOS scaling has been the driving force of decades of
exponential gains in processing capabilities, chip specializa-
tion improved the gains of specific applications or domains
under a given budget. The focus on specific domains alleviates
design restrictions and eliminates the structural support
for unnecessary functionality [16]. We believe that future
processing roadmaps and evaluation methods will become
specialization-driven, focusing on specific domains [17,18]
and shift away from traditional evaluation methods of
benchmarking processors on a range of applications (e.g.,
SPEC) [19]. Similarly, new metrics will become a necessity
to evaluate the quality of specialization-driven architectures.

Quantifying Chip Specialization Return: Chip special-
ization benefits from the co-optimization of different elements
in the hardware-software stack such as the programming
model and chip microarchitecture. Figure 2 outlines the ab-
straction layers of traditional architectures and our taxonomy
of layers that comprise an accelerator-centric architecture.
The ability to specialize a chip and improve returns, such as
performance or energy efficiency, under a fixed budget is the
main factor that makes accelerators relevant and appealing
for future architectures. In an era of non-scaling CMOS,
after transistor improvements stagnate, gains would become
dependent on fixed-budget chip specialization.

We analyze chip gains. A gain is a target function the
chip strives to maximize (e.g., energy efficiency) for the
computation domain (the top layer). The gain is measured by
executing the targeted computation on the analyzed chip, and
it depends on the layers that are not fixed, i.e., Algorithm
(Alg), Framework (Fwk), Platform (Plt), Engineering (Eng),
and Physical(Phy). Since the complexity of chip architectures
makes it challenging to measure the contribution of individual
components to overall gain we define Chip Specialization
Return (CSR) as the ratio between the gain and the gain from
a chip’s physical properties (e.g., due to more transistors):

CSR(Alg,Fwk,Plt,Eng) =
Gain(Alg,Fwk,Plt,Eng,Phy)

Gain(Phy)
(1)

The CSR metric defined in Equation 1 is used as a metric to
quantify the merit of chip specialization, i.e.: “how much did
the chip’s compute capabilities improve under a fixed physical
budget?” The value of CSR improves in accordance to
different components from the specialization stack, e.g.: better
compilers or hardware-expressive libraries (programming
framework), switching from FPGAs to more efficient ASICs
(platform), advancement of chip design methodologies and
RTL languages (chip engineering), and so on. By decoupling
returns of chip specialization from transistor-driven benefits,
the CSR can also be used to estimate the gains of future

45
nm

28
nm

16
nm

10
nm 7n
m

5n
m

0.25

0.5

0.75

1.0

R
el

at
iv

e(
×)

Leakage Power

45
nm

28
nm

16
nm

10
nm 7n
m

5n
m

0.25

0.5

0.75

1.0

R
el

at
iv

e(
×)

Capacitance

45
nm

28
nm

16
nm

10
nm 7n
m

5n
m

0.25

0.5

0.75

1.0

R
el

at
iv

e(
×)

VDD

45
nm

28
nm

16
nm

10
nm 7n
m

5n
m

0.25

0.5

0.75

1.0

R
el

at
iv

e(
×)

Frequency

45
nm

28
nm

16
nm

10
nm 7n
m

5n
m

0.25

0.5

0.75

1.0

R
el

at
iv

e(
×)

Dynamic Power

(a) CMOS Scaling. Sources: [20]–[22].

0.01 0.1 1 10 100
D = Area/(CMOS Node2)[mm2/nm2]

0.1

1

10

100

Tr
an

sis
to

r C
ou

nt
 [1

09]

TC(D) = 4.99 109×D0.877

16nm-12nm
40nm-20nm
80nm-45nm
180nm-90nm

(b) Transistor Count Given Area and CMOS Node

24 120 600
TDP[W]

1

10

100

Tr
an

sis
to

rs
[1

09]
×

 F
re

q
[G

H
z]

10nm-5nm
22nm-12nm
32nm-28nm
55nm-40nm0.02×TDP0.869

0.11×TDP0.729

0.49×TDP0.557

2.15×TDP0.402

Projection

(c) Transistor Count Given Chip Frequency and TDP

10

100

1K

R
el

at
iv

e(
×) Throughput (OP/s)

45
nm 28

nm 16
nm 10

nm 7n
m 5n
m

25mm2 50mm2 100mm2 200mm2 400mm2 800mm2

<50W 50W-200W 200W-800W >800W

10

100

1K

R
el

at
iv

e(
×) Energy Efficiency (OP/s/W)=(OP/J)

45
nm 28

nm 16
nm

10
nm

7n
m

5n
m

25mm2 50mm2 100mm2 200mm2 400mm2 800mm2

<50W 50W-200W 200W-800W >800W

(d) Chip Gains: Throughput and Energy Efficiency for Different CMOS Nodes, TDPs, and Die Sizes for: fChip = 1GHz

Figure 3: CMOS Potential Model: Device Scaling, Chip Transistor Budget, and Physical Chip Gains.

specialized chips. We use a comparative approach to estimate
the impact of specialization as chip gains improve, and
establish a roadmap of chip specialization trends. Given two
chips, with their reported gains for the targeted computation
domain, GainA and GainB, under the accelerator taxonomy
are as follows:

GainA

GainB︸ ︷︷ ︸
Reported Gains

=
CSR(AlgA,FwkA,PltA,EngA)

CSR(AlgB,FwkB,PltB,EngB)︸ ︷︷ ︸
Specialization−Driven Gains

× Gain(PhyA)

Gain(PhyB)︸ ︷︷ ︸
CMOS−Driven Gains

(2)

From the relations in Equation 2, we can examine trends
of CSR for an application domain and a group of accelerators
using the reported gains (e.g., energy efficiency or through-
put), given a physical chip potential model (constructed
in Section III). These will provide us with the ability to
evaluate the hardware/software co-design space for popular
application domains through the following questions: (i) to
what extent do specialized chips depend on the nearly-ending
improvement in CMOS transistors capabilities, and to what
extent do they rely on an improved specialization? (ii) when
CMOS transistors stop improving, what are the projected
gains for a target application before specialization reaches
its limits?

III. CMOS POTENTIAL MODEL

We construct an application-independent model to estimate
the CMOS-driven capabilities of a chip, given its physical
properties. This model allows us to decouple the chip’s
specialization gains from its transistor driven gains. We build

the model using datasheets of 1612 CPUs and 1001 GPUs we
gathered from online sources [19,23,24]. Our model receives
as input the following: (i) CMOS node (N), (ii) the die size
(A) or transistors count (TC), (iii) chip operation frequency,
and (iv) the chip thermal design power (T DP). While our
model is not confined to a specific target function, we focus
on throughput and energy efficiency.

Device Scaling Model: To obtain device-level properties,
we use contemporary scaling equations [20] and projections
for 5nm CMOS from the recent IRDS report [22] and
construct the model shown in Figure 3a which we use to
model changes in transistor density, speed, energy, and power.

Transistor Budget Model: As transistor count is not
always disclosed for specialized chips, we approximate the
number of chip transistors. We use logarithmic regression
with least mean square errors (MSE) to fit the exponential
curve of transistor count as a function of chip transistor
density factor (D), which is proportional to the die area, A,
and inversely proportional to the square of the node size, i.e.:
A/N2. Figure 3b shows the model constructed based on the
datasheets. Empirically, transistor count scales sub-linearly to
the density factor, since for larger chips the design complexity
makes it harder to fully-utilize the chip. While Figure 3b
projects that for large 5nm CMOS chips (D≤ 30) the number
of transistors can reach 100 billion, not all of them can be
utilized. As classic device scaling rules no longer apply to
modern CMOS nodes, chips are limited by the TDP budget
amid the increasing power density. Power limitations restrict
the fraction of active chip transistors to keep dissipation

rates within a TDP envelope [10,11]. Figure 3c shows the
exponential curves of the number transistor as a function of
the chip TDP and operation frequency for different CMOS
nodes. Given the TDP, CMOS node, and frequency, we use
our model to derive the number of active chip transistors.

Chip Gains Model: We integrate the CMOS scaling model
with the transistor budget models, and construct the physical
chip gain model. Figure 3d depicts the relative scaling of the
chip’s throughput and energy efficiency (executed operations
per energy spent). We treat chip throughput as the targeted
performance since we explore applications that possess high
degrees of parallelism, like most accelerated workloads
studied in literature [8,16,25,26]. Gains were normalized
to a 25mm2 chip fabricated with 45nm CMOS. Using the
transistor budget TDP model, we show the gains for different
numbers of active transistors under various power envelope
zones. As reflected by the figure, power constraints cap the
gains of large chips. For example, the figure shows that,
while the relative throughput of an 800mm2 chip with 5nm
transistors is ∼ 1,000×, under an 800W envelope, it drops
by about 70% to ∼ 300×. As expected, small chips are
favorable for energy efficiency. As chips get larger, the high
transistor count and static power of new CMOS nodes make
old nodes more appealing under a restricted TDP.

We use the CMOS potential model to measure how
specialized chips scale with respect to their transistor-driven
capabilities for a given domain. The model allows us to
decouple transistor-driven gains from specialization-driven
gains. Finally, in Section VII, we combine the potential
model and estimated specialization-driven gains to project
the attainable gains of future accelerators, ultimately reaching
the accelerator wall imposed by the end of CMOS scaling.

IV. EMPIRICAL SPECIALIZATION RETURNS

In this section, we characterize the trends of chip spe-
cialization return using popular accelerator domains: video
decoding ASICs, graphics rendering GPUs, Convolutional
neural networks on FPGAs, and Bitcoin mining using CPUs,
GPUs, FPGAs, and ASICs. For each domain, we use the
model from Section III to model the physical potential of
the examined chips. In terms of the abstraction layers in
Figure 2, by isolating the domain and physical layers, we
examine the influence of the specialization stack layers:
algorithm, programming framework, chip platform, and chip
engineering.

A. ASIC Video Decoders

The footprint of digital videos has increased in recent
years, due to the ubiquity of mobile devices, video sharing
applications, and online services such as Netflix, whose
streaming bandwidth peaks at 37% of overall internet
traffic [39], and YouTube, which store hundreds of new
video hours uploaded every minute [40]. Popular videos in
online services can be decoded millions of times by HDTVs,
smartphones, and tablets. These trends, and the spatial nature

ISS
CC20

06

ISS
CC20

07

VLSI
20

09

ISS
CC20

10

ISS
CC20

13

JSS
C20

16

ISS
CC20

11

JSS
C20

11

ES
SC

IRC20
14

ES
SC

IRC20
16

ISS
CC20

12

JSS
C20

17

10
20
30

M
Pi

xe
ls

/ s
ec

on
d[

×]

180nm
130nm

90nm
65nm

40nm
28nm

×3
2

×6
4

0.5
1.0
1.5

CS
R[

×]

Chip
Specialization
Return

(a) Scaling of Performance and Chip Specialization Return

ISS
CC20

06

ISS
CC20

07

VLSI
20

09

ISS
CC20

10

ISS
CC20

13

JSS
C20

16

ISS
CC20

11

JSS
C20

11

ES
SC

IRC20
14

ES
SC

IRC20
16

ISS
CC20

12

JSS
C20

17
0

10
20
30
40

Ch

ip
 T

ra
ns

ist
or

s [
×] On-Chip SRAM Core Logic

0
100
200
300
400

Fr
eq

.[M
Hz

]

Frequency

(b) Scaling of Chip Transistor Count and Chip Frequency

ISS
CC20

06

VLSI
20

09

ISS
CC20

07

JSS
C20

11

ISS
CC20

13

ISS
CC20

10

ISS
CC20

11

ISS
CC20

12

ES
SC

IRC20
14

JSS
C20

16

JSS
C20

17

ES
SC

IRC20
16

10
20
30

M
Pi

xe
ls

/ J
ou

le
[×

]

180nm
130nm

90nm
65nm

40nm
28nm

×3
4

0.5
1.0
1.5

CS
R[

×]

Chip
Specialization
Return

(c) Scaling of Energy Efficiency and Chip Specialization Return

Figure 4: Video Decoder ASICs: Performance, Hardware
Budget, and Energy Efficiency. Sources: [27]–[38]

of videos, motivate the use of specialized video IP cores in
commercial SoCs.

Impact of The Entire Specialization Stack: We evaluate
fabricated video decoding ASIC chips and examine their
gains with respect to throughput and energy efficiency.
Figure 4 shows the scaling trends of performance, on-chip
memory and core logic transistors, clock frequencies, and
energy efficiency. Gains are presented in an ascending manner
and are normalized to the least performing ASIC. Figure 4b
shows estimations of the number of transistors given the
number of NAND logic gates, and the number of SRAM bits
for on-chip memory and auxiliary buffers for logical units.
Not all works are presented in Figure 4b since some works
did not specify the size of on-chip SRAMs. As Figures 4a
and 4c show, compared to the baseline ASIC presented
in ISSCC2006 [27], absolute decoding throughput and
throughput per energy improved by rates of up to 64× and
34×, respectively. In contrast to throughput and throughput
per energy, for the best performing ASICs, chip specialization
did not improve, and even got worse since CSR was less
than one. This is caused by the increase in chip transistor
count (JSSC2017 has∼36× more transistors) which enables
more processing elements in parallel, and the improvement
in energy efficiency for used CMOS nodes (180nm versus
40nm in JSSC2017, and 28nm in ESSCIRC2016) outpaced
the improvement in overall performance and energy efficiency.
Therefore, the physical layer had a higher impact than the
layers in the specialization stack.

2011 2013 2015 2017
GPU Release Date

2

4

6

8
Fr

am
es

 /
Se

co
nd

 [×
]

×4.15

×0.95

Crysis 3 FHD
Absolute
Chip Specialization
Return

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
 /

Se
co

nd
 [×

]

×4.59

×1.16

Battlefield 4 FHD

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
 /

Se
co

nd
 [×

]

×5.05

×1.14

Battlefield 4 QHD

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
 /

Se
co

nd
 [×

]

×5.07

×1.27

GTA V FHD

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
 /

Se
co

nd
 [×

]

×5.91

×1.44

GTA V FHD 99th perc.

(a) Performance (Apps 1-5)

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
/Jo

ul
e

[×
]

×4.71

×1.27

Absolute
Chip Specializtion
Return

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
/Jo

ul
e

[×
]

×5.24

×0.99

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
/Jo

ul
e

[×
]

×5.63

×1.22

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
/Jo

ul
e

[×
]

×6.03

×1.2

2011 2013 2015 2017
GPU Release Date

2

4

6

8

Fr
am

es
/Jo

ul
e

[×
]

×7.5

×1.47

(b) Energy Efficiency (Apps 1-5)

Figure 5: GPU Frame Rates (Apps 1-5): Throughput and Energy Efficiency

65nm 55nm 40nm 28nm 16nm

5

10

15

20

Fr
am

es
 /

Se
co

nd
 [×

]

Tesla 2,
Tesla

Tesla 2

Fermi 2,
TeraScale 2,
Fermi

GCN 1,
Kepler

GCN 2

Maxwell 2

Pascal

Same Architecture,
Newer CMOS Node

Same CMOS Node,
Newer Architectures

(a) Absolute
65nm 55nm 40nm 28nm 16nm

0.4

0.8

1.2

1.6

Ac
ce

le
ra

tio
n

Re
tu

rn
s [

×]

Tesla

Tesla 2
Tesla 2

Fermi

Fermi 2,
TeraScale 2

GCN 2,
GCN 1,
Kepler

Maxwell 2
Pascal

(b) Chip Specialization Return

Figure 6: Architecture + CMOS Scaling: Throughput

65nm 55nm 40nm 28nm 16nm

4

8

12

16

Fr
am

es
/Jo

ul
e

[×
]

Tesla 2,
Tesla

Tesla 2

Fermi 2,
TeraScale 2,
Fermi

GCN 2,
GCN 1,
Kepler

Maxwell 2

Pascal

(a) Absolute
65nm 55nm 40nm 28nm 16nm

0.5

1.0

1.5

2.0

Ac
ce

le
ra

tio
n

Re
tu

rn
s [

×]

Tesla

Tesla 2

Tesla 2 Fermi 2,
TeraScale 2,
Fermi

GCN 2,
GCN 1,
Kepler

Maxwell 2

Pascal

(b) Chip Specialization Return

Figure 7: Architecture + CMOS Scaling: Energy Efficiency

B. GPU Graphics Rendering

GPUs are the most widespread specialized chips, due to the
popularity of massively-parallel workloads and maturity of
programming environments such as CUDA and OpenCL. As
early GPU application scope focused on graphic applications,
we would like to examine the behavior of this mature domain.
We analyzed a database of reported graphics benchmark
results [41] and combined it with the database of GPU
datasheets we used to construct the CMOS potential model
in Section III. Within these results, we have selected 24
popular game benchmarks including Battlefield 4, Crysis
3, GTA V, and Portal 2. Figure 5 shows the results of five
applications (other applications show similar trends). Each
of the presented applications was tested on over 20 different
GPUs and normalized to the oldest GPU chip evaluated.
Opaque markers show the gains of high-performance GPUs,
and translucent markers show the gains of mid-end and low-
end GPUs. We use quadratic curve fitting to construct curves
for the reported frame-rates and CSR (frame-rate versus

CMOS potential). We see that over a period of six years
performance increased by 4− 6× (Figure 5a) and energy
efficiency increased by 4.5−7.5× (Figure 5b). However, the
CSR trends reflect that performance and energy efficiency
did not improve much, if at all, beyond the CMOS potential.

Impact of Programming Framework and Chip Engi-
neering: We evaluate the effects of advancements in GPU
architectures. In terms of the specialization stack, shown
in Figure 2, this is a way of quantifying the benefits
from: (i) Improved chip engineering, as new architectures
are designed with newer tools and compilers, and using
matured engineering disciplines. (ii) Better programming
platforms, e.g., newer CUDA versions that support new
computationally-driven libraries (e.g., video decoding, and
sparse matrix computations), performance primitives, and
ISA extensions [42]. We compare the gains between each
pair of GPU architectures (and potentially CMOS nodes),
<Arch,X> and <Arch,Y >, using the relative geometric gains
mean of all shared applications, meaning:

Gain(X 7→ Y) = N

√
N

∏
`=1

Gain<Arch,X>(App`)
Gain<Arch,Y>(App`)

(3)

We set the relative gains of architecture pairs with at
least five shared applications (N ≥ 5), and use transitivity to
compute the relative gains of architecture pairs with less than
five shared applications. If relative gain between architectures
X and Y was not set, we use the geometric means of all M
intermediary architectures with relations to X and Y :

Gain(X 7→ Y) = M

√
M

∏
Γ=1

Gain(X 7→ Γ) ·Gain(Γ 7→ Y) (4)

We iteratively construct the relations matrix, until we do
not add a new pair. Figures 6 and 7 show the trends of
performance and energy efficiency of GPU architectures
and their respective CMOS nodes. We see that as expected,
for a given CMOS node, newer architectures deliver better
absolute gains. In terms of CSR, the first architectures to be
implemented on a new CMOS node always seem to perform
worse than their predecessors on the old node (for example
Fermi). As the given CMOS node stabilizes, architectures
become more mature and yield better CSR. However, for
both performance and energy efficiency, the overall CSR

FPG
A20

16

FPG
A20

15

FPG
A20

16

ISC
A20

17

ISC
A20

17

ISC
A20

17

ICCAD20
16

FPL
20

16

FPG
A20

17

FPG
A20

17

FPG
A20

17

6
12
18
24

GO
PS

[×
]

AlexNet
28nm 20nm

2
4
6
8

CS
R[

×]

Chip Specialization Return

FPG
A20

16

FPG
A20

16

FPG
A20

16

ICCAD20
16

FC
CM20

17

FPG
A20

17

FPG
A20

17

FPG
A20

18

FPG
A20

17

6
12
18
24

GO
PS

[×
]

VGG-16
28nm 20nm

2
4
6
8

CS
R[

×]

Chip Specialization Return

(a) Performance Scaling of FPGAs and Respective CMOS Nodes: Absolute and Chip Specialization Return

FPG
A20

16

FPG
A20

15

FPG
A20

16

ISC
A20

17

ISC
A20

17

ISC
A20

17

ICCAD20
16

FPL
20

16

FPG
A20

17

FPG
A20

17

FPG
A20

17

25
50
75

100

%
 U

til
iza

tio
n % LUTs % DSPs % BRAMs

100
200
300
400

Fr
eq

.[M
Hz

]Frequency

FPG
A20

16

FPG
A20

16

FPG
A20

16

ICCAD20
16

FC
CM20

17

FPG
A20

17

FPG
A20

17

FPG
A20

18

FPG
A20

17

25
50
75

100

%
 U

til
iza

tio
n % LUTs % DSPs % BRAMs

100
200
300
400

Fr
eq

.[M
Hz

]Frequency

(b) FPGA Resource Utilization and Chip Frequency

FPG
A20

16

FPG
A20

15

ICCAD20
16

FPG
A20

16

FPL
20

16

ISC
A20

17

ISC
A20

17

ISC
A20

17

FPG
A20

17

FPG
A20

17

FPG
A20

17

5

10

15

GO
PS

/J[
×]

28nm 20nm

3

6

9

CS
R[

×]

Chip Specialization Return

FPG
A20

16

ICCAD20
16

FPG
A20

16

FPG
A20

16

FC
CM20

17

FPG
A20

17

FPG
A20

17

FPG
A20

18

FPG
A20

17

5

10

15

GO
PS

/J[
×]

28nm 20nm

3

6

9

CS
R[

×]

Chip Specialization Return

(c) Energy Efficiency Scaling of FPGAs and Respective CMOS Nodes: Absolute and Chip Specialization Return

Figure 8: FPGA Implementations of AlexNet and VGG-16. Sources: FPGA2016 [43], FPGA2016† [44], FPGA2016∗ [45],
FPGA2017 [43], FPGA2017† [46], FPGA2017∗ [47], FPGA2018 [48], FPGA2018† [49].

does not improve over time, as the CSR for the 16nm Pascal
is roughly the same as that of the 65nm Tesla.

While newer GPU architectures tend to deliver better
performance and energy efficiency, when accounting for
average specialization return rates, newer GPUs do not
necessarily perform better and sometimes even perform worse
than their expected potential. The reason is that newer, better-
performing GPUs were implemented using newer CMOS
nodes with higher density and energy efficiency, therefore
on average, the impact of better CMOS potential is higher
than the impact of average improvement over that potential.
Furthermore, maintaining even a fixed CSR is challenging
since it requires new programming models and architecture
capable of delivering the same relative gains for the newer and
more-complex chips. Figures 6 and 7 reflect that, while GPU
frame-rate gains improved by 13−16×, average CSR rates
were an order-of-magnitude less, i.e., 1.0−1.6×, implying
that CMOS potential is the dominating factor in the GPU
graphics roadmap.

C. FPGA Convolutional Neural Networks

Machine learning algorithms became popular due to the
increase in demands for user-personalized experience, the
ubiquity of user-owned devices [50], and the increase in
generated data which needs to be processed to provide a
better experience on user-owned devices. The recent success
of machine learning algorithms based on Convolutional
Neural Networks (CNN) in image recognition algorithms
has sparked growing efforts to implement CNN image-
recognition algorithms in hardware. We examine FPGA
implementations of two popular models, that were notable

landmarks following their performance in the ImageNet Large
Scale Visual Recognition Competition [51]: (i) “AlexNet”
which reduced the top-5 error from 26% to 15.3% in
2012 [52], and (ii) “VGG-16” which further reduced the
top-5 error to 7.3% in 2014 [53].

Impact of Algorithm: Figure 8 shows the performance,
resource utilization, and energy efficiency for FPGAs im-
plementing both CNN models. All studies use FPGAs
implemented in 28nm or 20nm CMOS. While most evaluated
works explored ways to optimize the data layout and resource
partitioning, some works leveraged algorithmic optimizations.
FPGA17† used built-in GEMM optimizations in OpenCL and
BRAM access locality to reduce the memory bandwidth re-
quirement of CNNs. In FPGA1027∗ [47] the authors applied
the Winograd transform [54] to exploit the locality in small
3×3 filters (used in AlexNet) and improve throughput by
minimizing the complexity of Convolutional operations [55].
As Figure 8 shows, FPGA CMOS technology had a high
impact on gains, as most 20nm FPGAs were superior to the
28nm FPGAs in terms of performance and energy efficiency.
While AlexNet performance and energy efficiency improved
by about 24× and 14×, respectively, VGG-16 improved
by about 9× and 7×, in terms of performance and energy
efficiency. A source for these disparities lies in the model size.
The amount of data needed to represent VGG-16 is three
times the amount of data for AlexNet [56], and the amount
of operations per image is about 20× [46]. The size of the
model stresses FPGA resources, making it harder to optimize
FPGAs for computation pattern reuse, and to run at the same
clock frequencies as an FPGA implementing AlexNet. While
CSR improved by up to 6× in both models, for the best

performing FPGAs in each model CSR did not improve
while absolute performance increased. For these designs
performance improved due to better physical budget (higher
utilization of FPGA resources). As CNNs are a relatively
new domain, there is hope for new algorithms to emerge and
achieve better CSR, i.e., better gains per fixed FPGA budget.

D. CPU/GPU/FPGA/ASIC Bitcoin Miners

Bitcoin and other cryptocurrencies made an impact on
the global economy, with an equally important aspect being
the energy spent to produce new currency blocks. A block
stores a portion of the network transactions in exchange
for fees paid to the block generator. In “proof-of-work”
cryptocurrencies such as Bitcoin, blocks are added to the
blockchain in a process called “mining”, which requires
solving a computationally intensive problem, whose difficulty
increases with the number of blocks. In the period of August-
October 2018, the aggregated energy consumed by Bitcoin
miners has peaked, and it was estimated at 73.12 Tera Watt-
Hours annually, which is the more than the energy spent by
Austria [57]. While first generation miners relied on CPUs,
the growing energy costs and the fact that mining computation
relies on a fixed SHA-256 hash function [58] incentivized
hardware specialization, and mining hardware shifted to
GPUs and later FPGAs, which were quickly overtaken by
ASIC miners [59]. We constructed a mining database using
datasheets and data collected from online forums to compare
Bitcoin mining CPUs, GPUs, FPGAs, and ASIC chips [60]–
[63]. As ASIC miners significantly differ in the number of
integrated chips and their sizes, we treat performance per
chip area as the performance metric, as it is a better indicator
of chip performance than absolute throughput.

Impact of Chip Platforms: Figure 9 shows the mining
gains of all tested chips. As reflected by the figure, ASIC
chip gains beat CPUs by several orders-of-magnitude, as
their initial chip specialization return rate is high. Following
the initial ASIC improvement, specialization return does not
improve (and even declines for energy efficiency). Figure 9a
shows how performance per area has improved by almost
600× across different ASICs (and about 600,000× compared
to the baseline CPU miner), but since physical capabilities
improved by 300×, specialization returns improve by about
2× across ASICs. The reason for this disparity stems from
the rapid transitions of one CMOS node to the next. This is
demonstrated in the two distinctive energy efficiency regions,
Ê and Ë , in Figure 9b. In Ê specialization return rates
improve for the early Bitcoin miners (130nm and 110nm) and
in Ë energy efficiency specialization return rates improve for
the modern Bitcoin miners (28nm and 16nm), but the sharp
decline in specialization returns between the two regions is
the result of the transition from 110nm to 28nm in a period of
15 months. This advancement outpaced Moore’s law roadmap,
introducing better silicon products at a faster rate than
algorithmic innovations, and therefore most benefits of ASIC
miners in that period are attributed to better chip physics.
This is the result of the nature of Bitcoin mining eco-system.

1

100

10k

1M

Re
la

tiv
e

Ga
in

[×
]

GHashes/(seconds×mm2)
Chip Specialization Return

(a) Performance

1

100

10k

1M

Re
la

tiv
e

Ga
in

[×
] 1

2

GHashes/Joule
Chip Specialization Return

(b) Energy Efficiency

Figure 9: Bitcoin Mining Capabilities of CPU, GPU, FPGA
and ASIC chips (vs. AMD Athlon 64 CPU Miner).

Initially, inexpensive platforms were used, but following the
increase in difficulty, miners moved to expensive ASICs with
new energy efficiency CMOS nodes, since the energy spent
became the dominating factor for mining revenues.

E. Observations and Insights

We summarize our insights from the conducted studies.
Specialization Returns and Computation Maturity:

From our experiment it was apparent that for mature
computation domains like video encoding or gaming frame-
rates, specialization returns either plateau or drop for high
performing chips. This is expected, because while physical
capabilities exponentially scaled in the last decade, algo-
rithmic innovation did not scale in a similar fashion for
well-studied problems. For emerging applications such as
Convolutional neural networks, shown in Section IV-C, the
counter phenomena can be seen. As this domain is gaining
traction, with multiple academic papers exploring a variety
of algorithms on similar chips (20nm and 28nm FPGAs),
we see improved CSR, by it will likely plateau as domain
becomes more mature.

Introduction Of a New Specialization Platform Deliv-
ered a Non-Recurring Boost in Gains: As seen in Figure 9,
most CSR gains were obtained by the transition to a new
platform (e.g., from FPGA to ASIC). However, following
that transition, CSR did not significantly improve, and gains
were mainly attained via better CMOS capabilities.

Confined Computations: The stagnation of specialization
returns for all platforms (i.e., GPUs, ASICs, etc.) in Figure 9
emphasizes the challenge of algorithmically innovating
a confined domain such as Bitcoin mining. Aside from
ASICBoost [64] that delivered a one-time 20% improvement
by parallelizing the inner and outer loops in the algorithm,
most miners operate in a brute-force and parallelized manner.
Following the end of CMOS scaling, confined domains such
as Bitcoin mining will become bound by the limited number
of ways to represent the core algorithm in hardware.

While Motivated by Transistor Limitations, Special-
ized Chips Still Highly Depend on Transistors: In all
experiments and for all chip specialization types, physical
capabilities had a high impact on gains. When CMOS scaling
ends, specialization improvements will slow down, and gains

Simplification Partitioning Heterogeneity

Memory Ê Simple DDR3 chips, interfaces, Ë Memory module banking Ì Hybrid memory for input
and physical memory space storing NN layer weights and intermediary results

Communication Í Simple FIFO communication Î Concurrent FIFOs for weights Ï Software-defined DMA
and systolic array data Interface for chip I/O

Computation Ð Multiply+add computation units Ñ Parallel multiply+add paths Ò Non-linear activation unit (e.g., ReLU)
with small precision (8-bit integers) and systolic array data reuse

Table I: Chip Specialization Concepts. Examples From a TPU ASIC Chip.

F
IF

O

F
IF

O

F
IF

O

F
IF

O

DDR3 DRAM Chips
Weight Memory (DDR3)

Unified

Buffer

5

Mult+Add

Accumulators

Matrix Multiply

Activation

Chip

I/O

Pooling

D
M

A
 E

n
g
in

e

Memory CommunicationComputation

FIFO

FIFO

FIFO

FIFO

Systolic

Data

Weights 4

21

6
3

9

8
7

Figure 10: TPU: DNN Inference + Specialization Concepts

will remain solely dependent on improving specialization
returns, that empirically scale more modestly. Therefore, the
trends of CMOS and specialization returns across accelerators
serve as a good indicator to assess the limits of specialization
for a target domain before reaching the accelerator wall.

V. CHIP SPECIALIZATION: CONCEPTS

The idea of chip specialization suggests that the knowledge
of a computation domain makes it possible to couple computa-
tions from the domain layer with underlying structures imple-
mented using the physical layer. By employing only compute-
essential hardware structures, chip specialization circumvents
the inefficiencies of general-purpose hardware [16,25,26]. In
this section, we discuss the techniques to achieve this goal,
and conduct an exploration of the chip specialization design
space, focus on its theoretical limits.

A. Chip Specialization Concepts

We formalize the process of chip specialization and its
relations to the three processing components: memory, com-
munication, and computation. We observe three concepts
of chip specialization, each can be applied independently to
a component, or across multiple components.

Simplification: A narrow problem domain space provides
architects with the ability to reduce the complexity of
hierarchies and datapaths and attain simpler structures with
similar functionality for reduced costs. Simplification can be
structural (e.g., narrowing underutilized buses and datapaths
for problems with limited variable representation), functional
(e.g., removing floating point units for integer problems), or
control (e.g., removing energy costly OoO pipe control).

Partitioning: Typical accelerated applications were shown
to possess high degrees of parallelism [8,16]. This property
motivated the development of concurrent hardware designs
with replicated paths that operate independently on sub-
portions of the application data. Common forms of partition-
ing are SIMD/VLIW vectorization, threaded parallelism, and
bisection of on-chip mesh NoCs.

DIN,1 DIN,2 DIN,3

+ /

+-

DOUT,1 DOUT,2

Data

Communication

Computation

Computation Path

St
ag
e
1

St
ag
e
2

Figure 11: DFG Example: 3 Inputs, 2 Computation Stages, 2
Outputs (An Example Computation Path Is Marked In Red).

Heterogeneity: Even a single workload has diverse needs:
certain computations require non-trivial functionality, a
workload might possess phases with different computation
intensities or reuse numerous distinct patterns. While simpli-
fied and partitioned hardware improves efficiency for these
cases, further reduction of energy per computation is possible
by diversifying the computation paths and tailoring each
path to support specific functionality. Common forms of
heterogeneity are fusing of functional units (e.g., clustering
of instructions [65] or dataflow graph phases [66]), algorithm-
specific functional units (e.g., tangent activation units for
neural networks), and asymmetric memory banks and network
topologies to accommodate irregular data patterns.

Nowatzki et al. [8] suggested a taxonomy of principles:
concurrency, communication, data-reuse, computation, and
coordination, that can be mapped to the concepts we define.
We found our classification a better fit for this limit study.

Case Study: Tensor Processing Unit: The increase of
user-generated sensory data necessitates high processing
power. Google engineers designed a 28nm ASIC chip called
a Tensor Processing Unit (TPU) to avoid from having to
double their CPU-based datacenters to meet the demands of
speech recognition alone [4]. They demonstrated how TPUs
improve the energy-efficiency of deep neural network (DNN)
workloads by 80× compared to CPUs. Figure 10 shows a
simplified block diagram of a TPU, with annotated examples
of all specialization concepts, summarized in Table I.

B. The Limits of Chip Specialization Concepts

We discuss the limits of chip specialization concepts. We
present the target computation problem as a dataflow graph
(DFG). A DFG is a concise representation of computation
problems, limited solely by inherent computation restrictions
(e.g., data dependencies), and not by implementation medi-
ums (e.g., timing, area, or power restrictions). This property
makes DFG optimization a useful way to model the design
space visible to the specialization stack layers in Figure 2.

The DFG is a directed-acyclic graph (DAG), G(V,E), in
which V is the set of vertices: V = {v1,v2..,v|V |} and E is
the set of edges: E = {evi,v j |vi,v j ∈V}. The DFG succinctly

Simplification Heterogeneity Partitioning
MEM. Time Θ(|V | · log(max|WSs|)) Θ(D) Θ(D · log(max|WSs|)

Space Θ(max|WSs|) Θ(|E|) Θ(max|WSs|)
COMM. Time Θ(|E|) Θ(D) Θ(D)

Space Θ(|V |) Θ(|E|) Θ(max|WSs|)
COMP. Time Θ(|E|) Θ(|VIN |) Θ(D)

Space Θ(1) Θ(2|VIN | · |VOUT |) Θ(max|WSs|)

Table II: Summary of Time and Space Complexity Limits for
Chip Specialization Concepts, in Terms of DFG Definitions.

describes the high-level relations of data and computation,
and how data flow across vertices. Definitions:
• Input variables set is a set of vertices with no incoming

edges: VIN = {vin1 , ..,vinN } ⊆V
• Output variables set is a set of vertices with no outgoing

edges: VOUT = {vout1 , ..,voutM } ⊆V
• Computation nodes set vertices with incoming edges and

outgoing edges, and represent computation operands:
VCMP = {vcmp1 , ..,vcmpM |vcmpi /∈VIN ,vcmpi /∈VOUT } ⊆V .

• Computation paths set is a set of all graph routes, i.e.,
vectors of edge-connected vertices, starting with an input
variable and ending with an output variable:
P = {

(
vp1 , ..,vpK

)
|evpi ,vpi+1

∈ E,vp1 ∈VIN ,vpK ∈VOUT }
• The DFG depth is length of the longest computation

path, i.e.: D = max{K|(vp1 , ..,vpK) ∈ P}
• Computation stage working set is the set of variables

computed in computation stage s, i.e.,:
WSs = {vp1,s , ..,vpn,s |

(
vp1,1 , ..,vp1,s , ..

)
, ..,
(

vpn,1 , ..,vpn,s , ..,
)
∈ P}

Figure 11 shows a DFG with three input variables, two
computation stages, and two output variables. We use DFG
definitions to explore hardware optimization bounds, and
consequently, chip specialization limits. For completeness,
we do not account for hardware limits (e.g., unlimited area).

Memory Simplification: Memory optimizations target
storage and memory access costs. Memory simplification
reduces storage at the expense of access performance. The
simplest hierarchy consists of a single module that stores
only needed variables. The minimal state that needs to be
stored in the memory hierarchy is the number of variables
processed at a given time. Therefore it is bound by the
largest working set size: Θ(max|WSs|). For simplicity, and
without loss of generality, we assume fixed variable sizes,
hence reading or writing has Θ(1) cost, and access costs
depend on the cost of lookups. Lookup is bounded by the
variable naming space. Therefore, lookup costs are at least
Θ(log(max|WSs|)) for a single variable, and for each stage
of the stage’s computation nodes access memory sequentially.
Since all nodes have to access the memory, timing complexity
is Θ(|V | · log(max|WSs|)).

Memory Heterogeneity: We express memory hetero-
geneity as a hierarchy formed by a layout of modules
and/or interfaces to support problem-specific access patterns.
Maximal performance is achieved by a banked hierarchy
that reflects all computation relations across nodes. Since
relations are described as DFG edges, storage costs are on the
order of Θ(|E|). The hierarchy performs fast Θ(1) accesses,
done in parallel in each stage. Total timing complexity is on
the order of stages, or DFG depth, i.e., Θ(D).

Communication Simplification: A communication fabric
is simplified by reducing the number of wires at the expense

Parameter Explored Values
Partitioning Factor 1, 2, 4, ... 524288
Simplification Degree 1, 2, 3, .., 13
CMOS Process (nm) 45, 32, 22, 14, 10, 7, 5

Table III: CMOS-Specialization Sweep Parameters.
Application Abbrev. Domain
Advanced Encryption Standard [13] AES Cryptography
Breadth-First Search [13] BFS Graph Processing
Fast Fourier Transform [13] FFT Signal Processing
General Matrix Multiplication [13] GMM Linear Algebra
Molecular Dynamics [14] MDY Molecular Dynamics
K-Nearest Neighbors [13] KNN Data Mining
Needleman-Wunsch [13] NWN Bioinformatics
Restricted Boltzmann machine [15] RBM Machine Learning
Reduction [14] RED Microbenchmarking
Sum of Absolute Differences [67] SAD Video Processing
Merge Sort [13] SRT Algorithms
Sparse Matrix-Vector Multiply [13] SMV Linear Algebra
Single Source, Shortest Path (Internal) SSP Graph Processing
2D Stencil [13] S2D Image Processing
3D Stencil [13] S3D Image Processing
Triad [14] TRD Microbenchmarking

Table IV: Evaluated Applications and Domains.

of increased latency. The limit is a minimal spanning tree
connecting all nodes. Further reduction of wires would leave
unconnected nodes, therefore the minimal wire complexity is
Θ(|V |). Since data has to traverse across all nodes to satisfy
all dependencies defined by the edges, the timing complexity,
in terms of network hops, is Θ(|E|).

Communication Heterogeneity: Since the DFG topology
is structured in a way that reflects the problem-specific
communication patterns, communication heterogeneity is
explicitly defined by the DFG edges. The wiring complexity
is on the order of network edges, i.e., Θ(|E|). The timing
complexity is the DFG delay, i.e., the number of stages in
the longest computation path, or DFG graph depth Θ(D).

Computation Simplification: DFG nodes express prob-
lems using pre-defined operands (e.g., ADD, MUL). As
computation completeness dictates that mathematical opera-
tions can be computed using logic gates, a node is reduced
to a set of Θ(1) gates. For fixed-size variables, operands
are reduced to a fixed number of gates, and computation is
done in a serial bitwise manner for each input-output pair.
Therefore, the total timing is the number of nodes × number
of input variables × of variable bits, which is on the order
of all edges that express the relations between the problem
nodes, or Θ(|E|).

Computation Heterogeneity: Computation heterogeneity
is done by fusing nodes to form problem-specific “super
nodes”. The extreme case for fusing is a single node
which acts as a lookup table that stores the computation
results of all computation inputs. The table would have
Θ(2|VIN |) entries (total input bits), each entry contains the
computation result, which the number of output variable
bits, i.e., Θ(|VOUT |). The total space complexity is, therefore:
Θ(2|VIN | · |VOUT |). The time complexity consists of the time
for lookup Θ(log(2|VIN |)) = |VIN | and reading the computa-
tion output, i.e., Θ(|VOUT |) and in total Θ(|VIN |+ |VOUT |).
Partitioning the table to |VOUT | tables, each storing an output
variable, would reduce output variable read time to Θ(|1|),
resulting in a time complexity of Θ(|VIN |), the same time as
reading all inputs (Θ(|VIN |)), solving computation in Θ(1)
runtime, and writing all outputs in parallel in (Θ(1)) runtime.

C1

C0

Solution
Original

Figure 12: Visualization of a 3D Stencil Computation

1 10 100
Runtime[×]

0.
01

0.
1

1
10

Po
we

r[W
]

Simplification
Power Saving

CM
OS Process

Power SavingCM
OS

 P
ro

ce
ss

+H
et

er
og

en
ei

ty
Pe

rfo
rm

an
ce

 G
ai

n

Best Energy
Efficiency

45nm
32nm
22nm

14nm
10nm

7nm
5nm

Figure 13: 3D Stencil Power, Timing, and CMOS Sweep.
Arrows Highlight Optimal Point and Gain Sources.

Memory / Communication / Computation Partitioning:
Partitioning is limited by the level of DFG parallelism, which
is on the order of the maximum number of concurrently
processed variables. This is the largest working set size, i.e.,
Θ[max|WSs|], since further partitioning would produce dimin-
ishing returns. The total space complexity for a maximally
partitioned system is, therefore Θ[max|WSs|], and since the
maximal path stages is: Θ(D), the lookup time for variables in
the memory takes Θ(D) · log(max|WSs|), and communication
and computation time complexity is Θ(D).

Table II summarizes the limits of the discussed chip
specialization concepts. As chip specialization is conceptually
limited, optimization space is finite and is further restricted
when combined with realistic hardware limitations.

VI. GAINS OF CHIP SPECIALIZATION CONCEPTS

While Section IV explores the empirical gains of real-
world accelerators, the sources of specialization concepts that
contribute to the obtained gains are not disclosed and should
be quantitatively explored. We quantify the contributions
of chip specialization and CMOS potential for a range
of applications. We determine the optimal points for each
application, attribute the sources of gains from CMOS
savings (i.e., more energy-efficient CMOS nodes) and the
specialization concepts described in Section V.

Methodology: Our framework is integrated with Aladdin,
a modeling tool that enables fast exploration of accelerator
design alternatives [12]. The original Aladdin flow sup-
ports partitioning of memory and datapaths using unrolling,
pipelining and memory banking. It also models heterogeneity
using DMA and scratchpads, register layout, and fusion of
operands for dependent dataflow graph nodes that fit the same
cycle. We extend the Aladdin flow to support CMOS scaling
using our model described in Section III. We add support
for simplification and pipelining of functional units and

SA
D

SR
T

M
DY

AE
S

RB
M

TR
D

RE
D

SS
P

BF
S

KN
N

S2
D

SM
V

FF
T

NW
N

GM
M

S3
D

AV
G

25
50
75

100

%
 G

ai
n

CMOS Saving Heterogeneity Simplification Partitioning Performance CSR

75
150
225
300

Re
la

tiv
e

Ga
in

 [×
]

(a) Performance

SA
D

SR
T

M
DY

AE
S

RB
M

TR
D

RE
D

SS
P

BF
S

KN
N

S2
D

SM
V

FF
T

NW
N

GM
M

S3
D

AV
G

25
50
75

100

%
 G

ai
n

CMOS Saving Heterogeneity Simplification Partitioning E. Efficiency CSR

30
60
90
120

Re
la

tiv
e

Ga
in

 [×
]

(b) Energy Efficiency
Figure 14: Specialization and CMOS Accelerator Gains.

registers, using data from [68]. By applying these techniques,
we approximate the hardware/software co-optimization of
accelerator applications using the specialization concepts
described in Section V. These concepts are also implemented
in modern accelerators, e.g., Hyper-Pipelining in Stratix
10 [69], and computational heterogeneity in the Xilinx ACAP
model [70]. Table III lists the explored parameters, and
Table IV summarizes the evaluated applications.

Case Study: Stencil Computation: 3D Stencil can be
used to extract spatial image features for computer vision
applications [71]. As Figure 12 demonstrates, the Sten-
cil kernel is highly parallel, as filtering can be applied
concurrently to different members of the “Orig” lattice.
We explore different design alternatives for a 3D Stencil
accelerator, shown in the Runtime-Power space in Figure 13.
As expected, CMOS advancement reduces power. As the
figure shows, partitioning improves performance gains for all
technologies, until reaching a point where runtimes plateau,
when reaching the maximal degree of kernel parallelism.
Following that point, old nodes (e.g., 45nm) experience
diminishing returns due to underutilized partitioned resources.
However, performance still improves for newer CMOS nodes,
since functional units are faster, and more computation units
are fused and scheduled in a cycle. This is a combination of
computation heterogeneity with advanced CMOS processes.
Simplification of functional units, registers, and communica-
tion, also reduces power (as smaller structures generate less
leakage power). The optimal points for energy efficiency
are received for 5nm CMOS, for the highest degree of
partitioning for which performance does not taper off, and the
highest simplification degree that does not cause diminishing
returns (i.e., increased latency due to deep pipelining).

We sweep the design space for the evaluated applications
to determine the contribution of CMOS and specialization
concepts. For each application, gains were normalized to
a 45nm accelerator with no simplification or partitioning.
Figure 14 shows the obtained gains. As simplification and
CMOS power saving reduce energy and not runtime, they
improved efficiency but not performance. While partitioning
was the primary contributing source for performance, CMOS
saving was the dominating factor for energy efficiency. For
both performance and energy efficiency, CSR is low, since
both CMOS saving and partitioning (i.e., using more transis-
tors for parallelization) are inherently CMOS dependent.

1 30 900 27K
Physical Performance[×]

1K
30

K
90

0K
De

co
di

ng
 M

Pi
xe

ls/
s Linear

Log

CMOS Limit

16.1K

408.7K

(a) ASIC Video Decoding

1 3 9 27
Physical Performance[×]

15
0

75
0

3.
8K

Ga
m

in
g

M
Pi

xe
ls/

s 1.6K
2.7K

(b) GPU Gaming/Graphics

1 4 16 64
Physical Performance[×]

40
0

1.
6K

6.
4K

Al
ex

Ne
t+

VG
G-

16
 G

OP
/s

3K
4.6K

(c) FPGA CNN

1 80 6.4K 512K
Physical Performance[×]

0.
2

8
32

0
M

in
in

g
GH

as
h/

s/
m

m
2

20.2

177.7

(d) ASIC Bitcoin Mining
Figure 15: Evaluated Applications and Specialization Chips: Accelerator Performance Projections.

1 10 100 1K
Physical Energy Efficiency[×]

1
6

36
De

co
di

ng
 M

Pi
xe

ls/
J Linear

Log

CMOS Limit

8.9

30.3

(a) ASIC Video Decoding

1 2 4 8
Physical Energy Efficiency[×]

1
3

9
Ga

m
in

g
Pi

xe
ls/

J 5.9
7.3

(b) GPU Gaming/Graphics

1 2.5 6.3 15.6
Physical Energy Efficiency[×]

8
32

12
8

Al
ex

Ne
t+

VG
G-

16
 G

OP
/J 85.5

111.6

(c) FPGA CNN

1 40 1.6K 64K
Physical Energy Efficiency[×]

1
10

10
0

M
in

in
g

GH
as

h/
J 24.4

82.1

(d) ASIC Bitcoin Mining
Figure 16: Evaluated Applications and Specialization Chips: Accelerator Energy Efficiency Projections.

Computation Accelerator Min. / Max. Thermal Power Frequency
Domain Platform Die Sizes [mm2] Budget [W] [MHz]
Video Decoding ASIC 1.68 16.0 7 400
Gaming/Graphics GPU 40 815 345 1500
Convolutional NN FPGA 100 572 150 400
Bitcoin Mining ASIC 11.1 504 500 1400

Table V: Accelerator Wall: Physical Parameters.

VII. THE ACCELERATOR WALL

We explore the limitations of the applications evaluated in
Section IV. The motivation for this limit study stems from
the dominance of CMOS-driven capabilities on accelerator
gains. As accelerators are CMOS dependent, we use the
CMOS-driven potentials to estimate the attainable gains of
each domain and project the accelerator wall, which is: the
best performance and energy efficiency for accelerator chips
manufactured after CMOS technology stops scaling.

Physical Chip Limits Parameters: We use the CMOS
scaling equations and chip model in Section III to estimate the
accelerator gains for chips implemented in the final CMOS
node, currently projected to be 5nm [22]. Table V summarizes
the explored parameters in each evaluated domain. We
follow the insights from Section III, and use largest dies
for performance, and smallest dies for energy efficiency. For
FPGAs we used typical TDP and die size numbers reported
for Xilinx FPGA boards [72], For video encoding ASICs
we use a TDP budget of 7W, 10× higher than the highest
power measure of 690mW in [38].

Projection Models: We examine two projection models
for the evaluated accelerators. (i) The Linear model is a
Pareto frontier projection that assumes a linear connection
between physical capabilities and the chip gains:

ProjectionLinear(Physical) = α ·Physical +β (5)

(ii) The Logarithmic model is a Pareto frontier projection
that assumes a sub-linear connection between physical
capabilities and gains.

ProjectionLog(Physical) = α · log(Physical)+β (6)

Our models account for the difference in application
behavior, domain and silicon maturity, and specialization
platforms. For example, GPUs rely on massive parallelism,
and are likely to exhibit linear behavior with regards to
physical performance (more transistors map to more cores).
The sub-linear logarithmic projections reflect the difficulty
in exploiting high complexity chips (e.g., due to peripheral
overheads), or due to inherent (e.g., structural) algorithmic
limitations in the ways the domain can be specialized using
the added silicon budget.

Results: Figures 15+16 show the projections of perfor-
mance and energy efficiency for the evaluated accelerators.
Generally, the linear model fits the performance spaces,
and the logarithmic model fits the energy efficiency spaces.
Since accelerated applications posses high parallelism [16],
performance scales linearly by adding more parallel pro-
cessing elements. In contrast, energy efficiency requires
simplifying datapaths and exploring other hardware tradeoffs.
For example, while Figure 15b shows the performance Pareto
frontiers for different GPUs and games behave linearly, that is
not the case for Figure 16b. The high disparity of accelerator
gains obtained under similar physical capabilities for GPUs
is caused by the variety of different applications evaluated
and targeted devices (e.g., server vs. smartphone GPUs).

Accelerator Limits: According to our limit study and
given the available chip data, while ASIC video decoding
performance and energy efficiency improved by 64× and
34×, respectively, we project further performance and en-
ergy efficiency improvements of 3− 130× and 1.2− 14×.
While GPU graphics frame rate improved by a rate of
16×, we project further performance and energy efficiency
improvements of 1.4− 2.5× and 1.4− 1.7×, respectively.
While FPGA CNN performance improved by 22.5×, we
project further performance improvements of 2.1−3.4× and
energy efficiency rates of 2.7−3.5×. While ASIC Bitcoin
performance increased by 600× (and about 600,000× over
CPUs), we project further improvements of 2− 20× and

1.4−5× in performance and energy efficiency, respectively.
All the limits were obtained using projections of 5nm CMOS
technology, which is not commercially available yet.

Our study shows that while performance has a promising
trajectory for most domains, energy efficiency is not projected
to improve at the same rate. Although specialization is hard
to predict, it is generally easier to predict domains that are
mature, well-studied, and algorithmically-stable. For example,
GPU frame rate is easier to predict than FPGA CNNs, since
the analyzed CNN data spans only four years of specialization
efforts. Interestingly, the properties that make specialization
predictable also the same ones that make domains fit for
specialization in the first place [8]–[10,16]; mature domains
have a variety of adopted applications, and well-studied
domains are stable and less prone to volatility and specialized
hardware obsoletion. As domains mature and dominating
algorithms as stabilized, so will chip specialization, and it
will become harder to improve gains under a fixed chip
budget. Following the end of CMOS scaling, accelerator
gains will become bound by the reach of specialization,
which can be quantified and projected using the metrics and
methods presented in this work.

VIII. RELATED WORK

Several works have explored the limiting factors of
processing technology and innovation. One of the earliest
works tried to project the practical limits of instruction-
level parallelism [73]. Recent studies identified the dark
silicon phenomenon that caps the number of active chip
transistors [10,11]. These studies demonstrated how the
slowdown of CMOS scaling and power budget limitations in
multicore chips would necessitate a shift towards new archi-
tectures. In a later study, Taylor advocated for specialization
as one of four avenues to mitigate dark silicon [74], and it
was also motivated by Halpern et al. that examined trends
in mobile and desktop processors [75]. While specialized
chips are motivated by the slowdown of CMOS scaling,
we demonstrate that they are prone to transistor-imposed
limitations as well.

Recent studies on specialized hardware improve pro-
grammability to maintain hardware performance and rele-
vance amid frequent algorithmic changes [8], optimize while
accounting for non-recurring engineering costs in ASIC de-
velopment [9], and use DRAMs to replace inefficient SRAMs
in FPGAs [76]. Accelerator modeling expressed accelerated
applications as transformable dependence graphs [77] and
dynamic dependence graphs in Aladdin [12].

A study by Borkar and Chien decoupled chip and appli-
cation performance to estimate the impacts of microarchi-
tecture on general-purpose microprocessors [78]. In recent
studies, the nearing-end of single monolithic chips was the
motivation for devising multi-chip GPU architectures [79]
and emerging memory based memoization architectures for
accelerators [80]. To the best of our knowledge, our work is
the first to quantify transistor dependence in accelerators, and
explore the limitations of chips specialization foundations.

IX. CONCLUSIONS

While the end of transistor scaling has motivated a shift
to specialized architectures, specialized chips still greatly de-
pend on gaining more transistors. In this work, we conducted
a careful limit study of chip specialization. In order to isolate
and remove the benefits of device technology, we built a
CMOS potential model using datasheets of thousands of real-
world chips. We characterized how specialization returns
have progressed in popular chip-specialized application
domains. We demonstrated that while domain maturity and
stability motivate hardware specialization, they also result
in diminishing specialization returns. We identified common
chip specialization concepts, presented their theoretical limits
and evaluated their contribution to application gains. Finally,
we conducted a limit study that projected the accelerator
wall of future potential chips for each application. The
limits imposed by the accelerator wall and the evaluation
methodologies presented can be used as foundations for a
better understanding of future accelerated applications. These
will become a necessity for future designs in the era of
accelerators and non-improving CMOS technology.

ACKNOWLEDGMENTS

We thank Niraj Jha, Ruby Lee, Margaret Martonosi,
Prateek Mittal, Mohammad Shahrad, and the anonymous
reviewers for their useful feedback. This material is based
on research sponsored by the NSF under Grants No. CNS-
1823222 and CCF-1453112, Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement No. FA8650-18-2-7846, FA8650-
18-2-7852, and FA8650-18-2-7862. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency
(DARPA), the NSF, or the U.S. Government.

REFERENCES

[1] Y. S. Shao and D. Brooks, “Research infrastructures for
hardware accelerators,” Synthesis Lectures on Computer Ar-
chitecture, vol. 10, no. 4, pp. 1–99, 2015.

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, et al., “A reconfigurable fabric for
accelerating large-scale datacenter services,” in Intl. Symp. on
Computer Architecture (ISCA), pp. 13–24, IEEE Press, 2014.

[3] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, et al., “Applied machine learning at facebook:
A datacenter infrastructure perspective,” 2018.

[4] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, et al., “In-datacenter performance analysis of a ten-
sor processing unit,” in Intl. Symp. on Computer Architecture
(ISCA), pp. 1–12, ACM, 2017.

[5] NVIDIA, “NVIDIA Tesla P100.” http://www.nvidia.com/
object/tesla-p100.html.

[6] Amazon, “Amazon EC2 F1 instances.” https://aws.amazon.
com/ec2/instance-types/f1/. [Online].

[7] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor,
“ASIC Clouds: Specializing the Datacenter,” in Intl. Symp.
on Computer Architecture (ISCA), pp. 178–190, IEEE Press,
2016.

[8] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright,
“Pushing the limits of accelerator efficiency while retaining
programmability,” in Symp. on High-Performance Computer
Architecture (HPCA), pp. 27–39, 2016.

[9] M. Khazraee, L. Zhang, L. Vega, and M. B. Taylor, “Moon-
walk: NRE Optimization in ASIC Clouds,” in Intl. Conf.
on Arch. Support for Programming Languages & Operating
Systems (ASPLOS), pp. 511–526, ACM, 2017.

[10] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, et al., “Conservation cores: Reducing the
energy of mature computations,” in Intl. Conf. on Arch. Support
for Programming Languages & Operating Systems (ASPLOS),
pp. 205–218, ACM, 2010.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore scaling,”
in Intl. Symp. on Computer Architecture (ISCA), pp. 365–376,
ACM, 2011.

[12] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A
Pre-RTL, Power-performance Accelerator Simulator Enabling
Large Design Space Exploration of Customized Architectures,”
in Intl. Symp. on Computer Architecture (ISCA), pp. 97–108,
IEEE Press, 2014.

[13] B. Reagen, R. Adolf, Y. S. Shao, G. Y. Wei, and D. Brooks,
“Machsuite: Benchmarks for accelerator design and customized
architectures,” in IEEE Intl. Symp. on Workload Characteriza-
tion (IISWC), pp. 110–119, 2014.

[14] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, et al., “The Scalable Heterogeneous Computing
(SHOC) Benchmark Suite,” in Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU), pp. 63–
74, ACM, 2010.

[15] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau,
S. Garcia, and M. B. Taylor, “Cortexsuite: A synthetic
brain benchmark suite,” in IEEE Intl. Symp. on Workload
Characterization (IISWC), pp. 76–79, 2014.

[16] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankar-
alingam, “Stream-dataflow acceleration,” in Intl. Symp. on
Computer Architecture (ISCA), pp. 416–429, ACM, 2017.

[17] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks,
“Fathom: Reference workloads for modern deep learning
methods,” in IEEE Intl. Symp. on Workload Characterization
(IISWC), pp. 1–10, IEEE, 2016.

[18] “MLPerf: A benchmark suite for machine learning.” https:
//mlperf.org.

[19] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and
M. Horowitz, “CPU DB: Recording Microprocessor History,”
Queue, vol. 10, no. 4, pp. 10:10–10:27, 2012.

[20] A. Stillmaker and B. Baas, “Scaling equations for the accurate
prediction of CMOS device performance from 180 nm to 7
nm,” Integration, the VLSI Journal, vol. 58, pp. 74–81, 2017.

[21] “International Technology Roadmap for Semiconductors
(ITRS).” http://public.itrs.net, 2015 executive summary, 2015.

[22] “International Roadmap for Devices and Systems (IRDS) 2017
Edition.” https://irds.ieee.org/roadmap-2017, 2017.

[23] TechPowerUp, “CPU Database.” https://www.techpowerup.
com/cpudb. [Online; accessed 09-July-2018].

[24] TechPowerUp, “GPU Database.” https://www.techpowerup.
com/gpudb. [Online; accessed 09-July-2018].

[25] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov,
B. C. Lee, and C. Kozyrakis, “Understanding sources of
inefficiency in general-purpose chips,” in Intl. Symp. on
Computer Architecture (ISCA), pp. 37–47, ACM, 2010.

[26] S. Bell, J. Pu, J. Hegarty, and M. Horowitz, “Compiling
algorithms for heterogeneous systems,” Synthesis Lectures on
Computer Architecture, vol. 13, no. 1, pp. 1–105, 2018.

[27] C. C. Lin, J. I. Guo, H. C. Chang, Y. C. Yang, J. W. Chen, M. C.
Tsai, and J. S. Wang, “A 160kgate 4.5kb skram h.264 video
decoder for hdtv applications,” in Intl. Solid-State Circuits
Conf. (ISSCC), pp. 1596–1605, 2006.

[28] C. D. Chien, C. C. Lin, Y. H. Shih, H. C. Chen, C. J.
Huang, C. Y. Yu, C. L. Chen, et al., “A 252kgate/71mw
multi-standard multi-channel video decoder for high definition
video applications,” in Intl. Solid-State Circuits Conf. (ISSCC),
pp. 282–603, 2007.

[29] D. Zhou, Z. You, J. Zhu, J. Kong, Y. Hong, X. Chen, X. He,
et al., “A 1080p@60fps multi-standard video decoder chip
designed for power and cost efficiency in a system perspective,”
in 2009 Symposium on VLSI Circuits, pp. 262–263, 2009.

[30] T. D. Chuang, P. K. Tsung, P. C. Lin, L. M. Chang, T. C.
Ma, Y. H. Chen, and L. G. Chen, “A 59.5mW scalable/multi-
view video decoder chip for Quad/3D Full HDTV and video
streaming applications,” in Intl. Solid-State Circuits Conf.
(ISSCC), pp. 330–331, 2010.

[31] D. Zhou, J. Zhou, X. He, J. Zhu, J. Kong, P. Liu, and S. Goto,
“A 530 Mpixels/s 4096x2160@60fps H.264/AVC High Profile
Video Decoder Chip,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 4, pp. 777–788, 2011.

[32] P. K. Tsung, P. C. Lin, K. Y. Chen, T. D. Chuang, H. J. Yang,
S. Y. Chien, et al., “A 216fps 4096x2160p 3DTV set-top box
SoC for free-viewpoint 3DTV applications,” in Intl. Solid-State
Circuits Conf. (ISSCC), pp. 124–126, 2011.

[33] D. Zhou, J. Zhou, J. Zhu, P. Liu, and S. Goto, “A 2Gpixel/s
H.264/AVC HP/MVC video decoder chip for Super Hi-Vision
and 3DTV/FTV applications,” in Intl. Solid-State Circuits
Conf. (ISSCC), pp. 224–226, 2012.

[34] M. Tikekar, C. T. Huang, C. Juvekar, V. Sze, and A. P.
Chandrakasan, “A 249-Mpixel/s HEVC Video-Decoder Chip
for 4K Ultra-HD Applications,” Intl. Solid-State Circuits Conf.
(ISSCC), vol. 49, no. 1, pp. 61–72, 2014.

[35] C. C. Ju, T. M. Liu, Y. C. Chang, C. M. Wang, H. M. Lin, C. Y.
Cheng, et al., “A 0.2nJ/pixel 4K 60fps Main-10 HEVC decoder
with multi-format capabilities for UHD-TV applications,” in
European Solid State Circuits Conf. (ESSCIRC), pp. 195–198,
2014.

[36] C. C. Ju, T. M. Liu, K. B. Lee, Y. C. Chang, H. L. Chou, C. M.
Wang, et al., “A 0.5 nJ/Pixel 4 K H.265/HEVC Codec LSI
for Multi-Format Smartphone Applications,” IEEE Journal of
Solid-State Circuits, vol. 51, no. 1, pp. 56–67, 2016.

[37] C. C. Ju, T. M. Liu, Y. C. Chang, C. M. Wang, C. Y. Cheng,
H. M. Lin, et al., “A 2.6mm2 0.19nJ/pixel VP9 and multi-
standard decoder LSI for Android 4K TV applications,” in
European Solid State Circuits Conf. (ESSCIRC), pp. 109–112,
2016.

[38] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, et al.,
“An 8K H.265/HEVC Video Decoder Chip With a New System
Pipeline Design,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 1, pp. 113–126, 2017.

[39] T. Spangler, “Netflix bandwidth usage climbs to nearly 37%
of internet traffic at peak hours,” 2015.

[40] B. Brouwer, “Youtube now gets over 400
hours of content uploaded every minute,” URL:
http://www.tubefilter.com/2015/07/26/youtube-400-hours-

content-every-minute/, Abruf am, vol. 15, p. 2016, 2015.
[41] AnandTech, “Gpu benchmarks.” https://www.anandtech.com/

bench/GPU17. [Online; accessed 11-July-2018].
[42] NVIDIA, “NVIDIA CUDA Toolkit Release Notes.” https:

//docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html.
[43] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrud-

hula, et al., “Throughput-Optimized OpenCL-based FPGA
Accelerator for Large-Scale Convolutional Neural Networks,”
in Intl. Symp. on Field-Programmable Gate Arrays (FPGA),
pp. 16–25, ACM, 2016.

[44] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, et al., “Going
Deeper with Embedded FPGA Platform for Convolutional
Neural Network,” in Intl. Symp. on Field-Programmable Gate
Arrays (FPGA), FPGA ’16, pp. 26–35, ACM, 2016.

[45] Y. Ma, N. Suda, Y. Cao, J. s. Seo, and S. Vrudhula, “Scalable
and modularized RTL compilation of Convolutional Neural
Networks onto FPGA,” in Intl. Symp. on Field Programmable
Logic and Applications (FPL), pp. 1–8, 2016.

[46] J. Zhang and J. Li, “Improving the Performance of OpenCL-
based FPGA Accelerator for Convolutional Neural Network,”
in Intl. Symp. on Field-Programmable Gate Arrays (FPGA),
pp. 25–34, ACM, 2017.

[47] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R.
Chiu, “An OpenCL Deep Learning Accelerator on Arria 10,”
in Intl. Symp. on Field-Programmable Gate Arrays (FPGA),
pp. 55–64, ACM, 2017.

[48] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang,
“Towards a Uniform Template-based Architecture for Acceler-
ating 2D and 3D CNNs on FPGA,” in Intl. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 97–106, ACM, 2018.

[49] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A Framework
for Generating High Throughput CNN Implementations on
FPGAs,” in Intl. Symp. on Field-Programmable Gate Arrays
(FPGA), pp. 117–126, ACM, 2018.

[50] V. J. Reddi, H. Yoon, and A. Knies, “Two billion devices and
counting,” IEEE Micro, vol. 38, no. 1, pp. 6–21, 2018.

[51] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
et al., “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3,
pp. 211–252, 2015.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Intl. Conf. on Neural Information Processing Systems (NIPS),
pp. 1097–1105, 2012.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014.

[54] S. Winograd, Arithmetic Complexity of Computations. Society
for Industrial and Applied Mathematics, 1980.

[55] A. Lavin, “Fast algorithms for convolutional neural networks,”
CoRR, vol. abs/1509.09308, 2015.

[56] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep
neural models to FPGAs,” in Intl. Symp. on Microarchitecture
(MICRO), pp. 1–12, 2016.

[57] Digiconomist, “Bitcoin energy consumption index.” https:
//digiconomist.net/bitcoin-energy-consumption. [Online; ac-
cessed 06-March-2018].

[58] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[59] M. B. Taylor, “The evolution of bitcoin hardware,” Computer,
vol. 50, no. 9, pp. 58–66, 2017.

[60] Bitcoin Wiki, “List of Bitcoin mining ASICs.” https://en.
bitcoin.it/wiki/List_of_Bitcoin_mining_ASICs.

[61] Bitcoin Wiki, “Mining Hardware Comparison.” https://en.

bitcoin.it/wiki/Mining_hardware_comparison.
[62] Bitcoin Wiki, “Non-specialized Hardware Comparison.” https:

//en.bitcoin.it/wiki/Non-specialized_hardware_comparison.
[63] Bitcointalk, “Bitcoin Forum.” https://bitcointalk.org.
[64] T. Hanke, “Asicboost-a speedup for bitcoin mining,” arXiv

preprint arXiv:1604.00575, 2016.
[65] C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-

González, and L. Eeckhout, “Accelerating an application
domain with specialized functional units,” ACM Trans. Archit.
Code Optim., vol. 10, pp. 47:1–47:25, Dec. 2013.

[66] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynami-
cally specialized datapaths for energy efficient computing,” in
Symp. on High-Performance Computer Architecture (HPCA),
pp. 503–514, IEEE Computer Society, 2011.

[67] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: characterization and architectural impli-
cations,” in Intl. Conf. on Parallel Arch. and Compilation
Techniques (PACT), 2008.

[68] S. Galal and M. Horowitz, “Energy-efficient floating-point
unit design,” IEEE Transactions on Computers, vol. 60, no. 7,
pp. 913–922, 2011.

[69] Intel, “Intel stratix 10 high-performance design handbook.”
https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/hb/stratix-10/s10_hp_hb.pdf, 2018.

[70] Xilinx, “Versal: The First Adaptive Compute Acceler-
ation Platform (ACAP).” https://www.xilinx.com/support/
documentation/white_papers/wp505-versal-acap.pdf, 2018.

[71] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan,
C. Kozyrakis, and M. A. Horowitz, “Convolution engine:
Balancing efficiency & flexibility in specialized computing,”
in Intl. Symp. on Computer Architecture (ISCA), pp. 24–35,
ACM, 2013.

[72] Xilinx, “Device Reliability Report.” https://www.xilinx.com/
support/documentation/user_guides/ug116.pdf.

[73] D. W. Wall, “Limits of instruction-level parallelism,” in
Intl. Conf. on Arch. Support for Programming Languages
& Operating Systems (ASPLOS), pp. 176–188, ACM, 1991.

[74] M. B. Taylor, “Is dark silicon useful?: Harnessing the four
horsemen of the coming dark silicon apocalypse,” in Annual
Design Automation Conference(DAC), pp. 1131–1136, ACM,
2012.

[75] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s rise to
power: Quantifying the impact of generational mobile CPU
design trends on performance, energy, and user satisfaction,” in
Symp. on High-Performance Computer Architecture (HPCA),
pp. 64–76, 2016.

[76] M. Gao, C. Delimitrou, D. Niu, K. T. Malladi, H. Zheng,
B. Brennan, et al., “DRAF: A Low-power DRAM-based Re-
configurable Acceleration Fabric,” in Intl. Symp. on Computer
Architecture (ISCA), pp. 506–518, IEEE Press, 2016.

[77] T. Nowatzki and K. Sankaralingam, “Analyzing behavior
specialized acceleration,” in Intl. Conf. on Arch. Support for
Programming Languages & Operating Systems (ASPLOS),
pp. 697–711, ACM, 2016.

[78] S. Borkar and A. A. Chien, “The future of microprocessors,”
Commun. ACM, vol. 54, no. 5, pp. 67–77, 2011.

[79] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi,
O. Villa, et al., “MCM-GPU: Multi-Chip-Module GPUs
for Continued Performance Scalability,” in Intl. Symp. on
Computer Architecture (ISCA), pp. 320–332, ACM, 2017.

[80] A. Fuchs and D. Wentzlaff, “Scaling datacenter accelerators
with compute-reuse architectures,” in Intl. Symp. on Computer

Architecture (ISCA), pp. 353–366, 2018.

