CSCE 5013 Domain Specific Accelerators Emerging NVM Technologies David Andrews

Must...Have...More...Memory 😳

Machine Learning and Neuromorphic Architectures Need Memory

Processor in/near Memory (PIM) Architectures can scale processing with Memory Capacity.

CMOS compatible Non-Volatile Memories are Emerging.....

The Big Three

PCM Phase Change Memory

-Intel/Micron Optane/3D XPoint

MRAM Magnetic RAM (STT-RAM) -Avalanche -Everspin -Samsung

RRAM Resistive RAM -> Memristors -Rambus -Adesto -Fujitsu -Crossbar -Panasonic

RRAM

Resistive RAM: Can be ambiguously used as umbrella term referring to any device that vary resistance (MRAM, PCM).

Tighter definition: oxygen vacancy memory (OxRAM) and conductive bridging memory (CBRAM).

OxRAM: oxygen ions get removed by current in one direction and replaced when current is opposite direction.

Removing oxygen ions -> decreases conductivity
Replacing oxygen ions -> increases conductivity

CBRAM: Conductive Bridging RAM

-TSMC 28 nm

Memristors

- Theorized:
 - Leon Chua (1971)

$$i(t) = C \frac{dv}{dt} \quad dq = C \, dv$$
$$v(t) = L \frac{di}{dt} \quad d\phi = L \, di$$
$$v(t) = i(t)R \quad dv = R \, di$$

charge <-> current

dq = idt $d\phi = v di$

Memristors

nature

Vol 453 1 May 2008 doi:10.1038/nature06932

LETTERS

The missing memristor found

Dmitri B. Strukov¹, Gregory S. Snider¹, Duncan R. Stewart¹ & R. Stanley Williams¹

PCM

PCM works by changing the phase of a special kind of glass $(Ge_2Sb_2Te_5)$ within the bit cell. Phase changed by heating

A higher heating current that is removed early causes glass to solidify into an amorphous nonconductive state (high heat -> Liquid -> high resistance)

Slower heating at lower temperature solidifies glass into a conductive crystalline structure (slow heat -> solid -> low resistance)

MRAM: Magnetic RAM (STT-RAM)

Magnetic Tunnel Junction (MTJ) sandwiched magnetic plates: -1 plate magnetic field set at factory -2nd plate magnetic field variable by direction of current flow on write lines (Right hand rule)

resistance of MTJ varied based on constructive/destructive combining of magnetic field

constructive -> low resistance - logic O

destructive -> high resistance - logic 1

MRAM: Magnetic RAM (STT-RAM)

Fabless Companies:

Everspin, Avalanche, Spin Transfer Technologies Using Globalfoundries 14nm

Relative Comparisons

Table 1.

Comparison of the different memory technologies.

	SRAM	DRAM	NAND flash	РСМ	STT-RAM	RRAM	RM
Data retention	Ν	Ν	Y	Y	Y	Y	Y
Cell factor (F^2)	50-120	6-10	2–5	6-12	4–20	<1	1–2
Read latency (ns)	1	30	50	20-50	2–20	<50	2–20
Write latency (ns)	1	50	>10 ⁶	50-120	2–20	<100	2–20
Write numbers	10 ¹⁶	10 ¹⁶	10 ⁵	10 ¹⁰	10 ¹⁵	10 ¹⁵	10 ¹⁵
Read/write power	Low	Low	High	High	Low	Low	Low
Other power	Leakage	Refreshing	None	None	None	None	Shifting

Gaungyu Sun et. al. "Memory that never forgets: Emerging nonvolatile memory and the implication for Architecture design"

Going beyond memory bottle neck

- Benchmarking Machine Learning, Artificial intelligence and neuromorphic computing memory elements
- Ultimate density can be achieved by going 3D

Parameters	Volatile Memory		Non-Volatile Memory				
	2D CMOS ASIC	3D CMOS ASIC	3D CMOS RRAM	3D CMOS PCRAM	3D CMOS MRAM		
Read Time	Best	Best	Good	Poor	Comparable to RRAM		
Write Time	Best (1ns)	Best (1ns)	Poor	Poor	Good (<10 ns)		
Write Energy/bit	Poor(10 uJ)	Poor(10 uJ)	Good (200 pJ)	Good (500 pJ)	Best (50 pJ)		
Area	ОК	Good	Best(50 F ²)	Best (40-50 F ²)	Best (50-80 F ²)		
Power	Good	Good	Good	Poor	Best		
Throughput/W	Good	Good	Best	Poor	Best		
Endurance (Cycles)	Best (>10 ¹⁴)	Best (>10 ¹⁴)	Bad (10^6)	Bad (10^8)	Good (10^12)		
Retention	10Y 110 °C	10Y 110 °C	10Y 70 ºC	10Y 70 ºC	10Y 125 °C		
Multi level bit			Available but not robust	Available and Robust	NO in STT, Hybrid S/MRAM integration?.		
Maturity	Mature	Confident		Mature			
Synapse			Stochastic, binary, analog	low drift, analog	All spin device possible (spin wave as interconnect and MTJ as synapse		

 Multi level bit memory increases the precision and accuracy. However, new circuit implementation algorithms can increase precision and accuracy to certain extent. Stochastic STT MRAM has shown improved precision!

• Multi level bit circuits are complex

• Trade off: Multi Level Bit (RRAM/PCRAM) vs Endurance (MRAM)?

Information Sciences Institute

ASIC Lab