Domain Specific Architectures

Processor-In-Memory (PIM) Architectures

Guest Lecturer

MD Arafat Kabir

Summer Graduate, PhD

Advisor: Dr. David Andrews

Dissertation: Deep-learning FPGA accelerator using PIM architecture

Earliest Publications

IEEE Transactions on Computers, 19(

Cellular Logic-in-Memory Array!

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract—As a direct q of larg le integrati
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of id y net-
works, or cells, When a small of ge is included in each
cell, the same array may be regarded either as a logically enhanced
memory array, or as a logic array whose elementary gates and con-
nections can be “programmed” to realize a desired logical behavior.

In this paper the specific engineering features of such cellular
logic-in-memory (CLIM) arrays are discussed, and one such special-
purpose array, a cellular sorting array, is described in detail to illus-
trate how these features may be achieved in a particular design. It is
shown how the cellular sorting array can be employed as a single-
address, multiword memory that keeps in order all words stored
within it. It can also be used as a content-addressed memory, a
pushdown memory, a buffer memory, and (with a lower logical
efficiency) a programmable array for the realization of arbitrary
switching functions. A second version of a sorting array, operating
on a different sorting principle, is also described.

digital computers and informat
Advantages can be obtained by |
cuitry in the form of a cellular
sional iterative configuration of
which contains both logic and st
mainly to its immediate neighbos
therefore, has the form of a mei
hanced with logic at each digit
tures of these cellular logic-in-m
are described. By way of an out
balance of this paper then descri
cal circuitry, operation, and use of
a cellular sorting array, that has
versatile and efficient than seve
lular logic-in-memory arrays ung
array can be employed not only 2

Index Terms—Cellular logic, large-scale integration, logic arrays
logic in memory, push-down memory, sorting, switching functions.

ing memory which keeps in order
it, but also as a pushdown men
memory, a content-addressed my

.

Computer, 1995

UNIVERSITY OF

ARKANSAS

Memory: The Terasys

Massively Parallel

PIM Array

Maya Gokhale
David Sarnoff Research Center*

IMD processor arrays provide superior performance on fine-
grained massively parallel problems in which all parallel threads

do the same operations most of the time. However, this fine-

Bill Holmes and Ken lobst
Supercomputing Research

grained synchrony limits the application space of SIMD (single instruc
tion, multiple data) machines. If there are many alternative data-

Center dependent actions among the parallel threads, the total execution time
is the sum of the alternatives rather than the maximum single-thread

The work reported here was done while the author
wus at the Supercomputing Research Center, Bowie,

execution time. Additionally, if the application is not inherently load-

Maryland.

balanced, performance can degrade seriously: Most of the processors
finish their work quickly and become idle, while a few processorsend up
with the lion's share of the work, Thus, the economics of purchasing a
high-performance computer often dictate giving up peak performance
on asmall application set (massively parallel SIMD) in favor of more mod-
est improvement over a larger range of applications (general-purpose

= Main idea: Put memory and processor together (same chip)

What is Processor-in-Memory (PIM)

CPU
ALU

RAM
SRAM | | SRAM
SRAM | | SRAM

Classic von Neumann Architecture

PIM
SRAM SRAM
ALU ALU
SRAM SRAM
! !
ALU ALU
PIM Architecture

7ot

UNIVERSITY OF
ARKANSAS

)
S
>
<
=
S
<

= Image source: Google search

Data in

7§ B8 BE-BE- SRR o

= |§| | § @ @)
] (] [] e e
m| [m| [m| [m] [m] [m]
e (1| B] [] [[Em] [Em] W] werines
o [m] [m] [m] [[] "
m| [m| (m] [m] (W] e
| [[(] (e e
poel B SN L SHL SHL N
e VY Y{ YYY w

M . 1
A Practical PIM Design: Cache-based i
8kB SRAM array
BL/BLB
N 255
- WL
000 E O / T Al ﬂ\l/
nu] o
=1 : (L[| A
ooe . SRAM EQl4' SRAM |, .
: I : : I Row s0e
|
| | T
mml =1 |
X]
“ . I e ;
i SRAM gj : SRAM |;
\ ‘ .) ° 1
0k . . . |
Xy . | : : !
\ —
- ~ o o \
5 3 33
R g 3 \
32kB |%} 16kB subarray |:|s:af’ \\
dat ate,
b:ni %}ISkB subarray LRU

= C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. lyer, D. Sylvester, D. Blaauw, and R. Das, “Neural Cache: Bit-Serial in-Cache
Acceleration of Deep Neural Networks,” in 2018 ACM/IEEE 45Th annual international symposium on computer architecture
(ISCA), 2018, pp. 383-396.

1o

Ly

Why Do We Need PIM Architectures?

= What happens in the CPU when you add two vectors?
= C = A+B; AB,C are vectors of 1000 elements

= result[i] = arrayl[i] + array2[i];
= read arrayl[i] to register R1

= read array2[i] to register R2

Most of the instructions (90%) are spent on control sequence!
= add R1l, R2 and save to R3

= Write R3 to result[i]
void add_vector(int arrayl[], int array2[],

= for (int i = 0; i < size; i++) int result[], int size)
= increment i (R4) {
= read size to register R5 for (int i = 0; i < size; i++) {

- compare R4, R5 result[i] = arrayl[i] + array2[i];

= make a conditional jump }

Tl

Why Do We Need PIM Architectures? s

= “The Memory Wall”

= Memory operations (read/write) are significantly slower than CPU
operations.

= Cycle latency from Wikipedia

= Corei9: 0.16 ns
= DDR5: 14 ns

Hitting the Memory Wall: Implications of the Obvious

Wm. A. Wulf
Sally A. McKee
Department of Computer Science
University of Virginia
(wulf | mckee}@virginia.edu

December 1994
This brief note points out something obvious — something the authors “knew” without

really understanding. With apologies to those who did understand, we offer it to those
others who, like us, missed the point.

gy
i

Why Do We Need PIM Architectures? s

= Memory access cost Domain-specific PIMs,
= 100x slower = Smaller arrays can be faster
= 100x more energy = PIM can minimize energy cost
= Narrow bus connection = Not limited by bus frequency or pin count
- Limited bus frequency = Match application access pattern
= Limited number of pins = Massive parallelism

= One word at a time

= Application requirements
= Different access patterns

Key Takeaway

PIM architectures can help with
memory-intensive applications.

Domain Specific Architectures

Case Study: PIM Architectures for FPGAs

Guest Lecturer

MD Arafat Kabir

Summer Graduate, PhD

Advisor: Dr. David Andrews

Thesis: Deep-learning FPGA accelerator using PIM architecture

= What is an FPGA?

L B == I | |y B I

Figure: AMD (Xilinx) Alveo U55 Datacenter Card (Virtex UltraScale+)

11

LU

R

Terminologies and Acronyms

= Accelerator: custom hardware for a specific application

= PIM, CIM, IMC: Processing-in-Memory, In-Memory Computing
= PE: Processing Element

= Overlay: Virtual architecture on top of reconfigurable fabric of FPGA
= BRAM: Block-RAM, 18K/20K/36K bit SRAM array

= LUT: A lookup-table based logic element in FPGAs FF
LUTRAM
BRAM
URAM

12

il

Case Study: CCB/RIMA R

= Motivations:
= Compute Capable BRAM (CCB)
= Modifying BRAMs to implement CCB (PIM)
= The first proposal of custom-BRAM PIM for modern FPGASs
= Reconfigurable In-Memory Accelerator (RIMA) using CCB

= Publication

= X.Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi, C. Augustine, R. R. lyer, and R. Das, “Compute-
Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs,” 2021 IEEE 29th Annual International
Symposium on Field-Programmable CustomComputing Machines (FCCM), pp. 88-96, 2021.

13

CCB Architecture

= Based on Neural-cache

Input Crossbar

Port Ain_data

Port A out_data

Port A Port A rd_en]] I
wr_en Width- in_data I_A I_A
Mode config. wr_en
CRAM decoder [v 1
Port A T_EN[Port A Write Driver
addr Predication| & Sense Amplifiers
Oox1ff Port A din_sel [1:0]
Col dec. | Plort lA Pre'char,ger & Equal':zer']
. N[
ctrl_sigs } Slls g 3 3
o||o||a =
opa_addr HIHIE Memory ; >
— 283 =e
opb_addr }<-< <|| CellArray Jig|/
opd_addr é é I~ C<'i 8
Port B in_data L
P B | Port B Precharger & Equalizer I
ort
Col dec. Port B Write Driver
Port B addr 5ot E &ISIense {\mplifiers T
or
Width- | in_data[|
Port Bwr_en config. | wr_en
d dg - % V—V Port B
ecoaer rd_en l l out_data

Output Crossbar

(a)

Column Peripheral

Predication|

Jel

UNIVERSITY OF
ARKANSAS
BL[i] BLBI[i]
t:g c:g — Vref
B
“(A]B)
ANB

L5

T_EN

EH

Ca

Q

C_EN

A

DIN[i]

v

DOUTIi]

(b)

14

RIMA Architecture

= GEMV followed by non-linear function (activation)
=Fn(A . B) = Fn(a;.b, +a,.b, + ... + a,.b,)

Matrix-Vector Unit (MVU) -
@?@@@@@ 2
. Reduce m 1
V 3 Register | | Instruction
R < ' Controll
d Ti|e1 Ti|e2 Ti|e3 Ti|e4 MVU Tile e ’,/ // Buffer FiM @
—>{ L-DPE [— \ e
MRF ; X
Hlerarchlcal broadcast network |
v 2 2 v —>{ L-DPE v
Global Reduction Unit | VRF MRF ,' Compute Compute Compute
BRAM BRAM | BRAM
foore H- ! !
Y MRF .—» eductlon Reduction | Reduction
“ Un|t Unit Unit
—>| Multi-Function Unit (MFU) | } M-DPE - v — v
\] Output serializer |
—)l Multi-Function Unit (MFU) | VRF M"_)PE] w
y |
| Loader (LD) | M-DPE [~ v
|
(a) (b) (c)

RIMA: Key improvements

= Compared with Intel’'s NPU and Microsoft’'s Brainwave architectures
= Average speedup of 1.25x and 3x respectively

= Roughly 10x faster than Nvidia Titan V GV100 GPU

10.43 ¥ 16.08

5.0 &

4.0)
o >
()] H Q’ N N N n

i F| [}
“0 0 | Hi HI |
0.0
RNN RNN LSTM LSTM LSTM LSTM GRU GRU GRU Geomean
(h=1152, (h=1792, (h=256, (h=512, (h=1024, (h=1536, (h=512, (h=1024, (h=1536,
t=256) t=256) t=150) t=25) t=25) t=50) t=1) t=1500) t=375)

O RIMA-INT8/NPU-INT8 B RIMA-BFP/BW-BFP

16

Case Study: PiCaSO/IMAGine

= Motivations:

= Achieving the fastest clock: BRAM Fmax
= Achieving linear scaling of peak-performance: 100% BRAM -> PIM

= Publications

= M. A. Kabir, E. Kabir, J. Hollis, E. Levy-Mackay, A. Panahi, J. Bakos, M. Huang, and D. Andrews, “FPGA Processor
In Memory Architectures (PIMs): Overlay or Overhaul ?” in 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). Gothenburg, Sweden: IEEE, Sep. 2023, pp. 109-115.

= M. A. Kabir, T. Kamucheka, N. Fredricks, J. Mandebi, J. Bakos, M. Huang, and D. Andrews, “IMAGine: An In-
Memory Accelerated GEMV Engine Overlay” in 2024 34th International Conference on Field-Programmable
Logic and Applications (FPL). Turin, Italy: IEEE, Sep. 2024.

17

PiCaSO Architecture

= Processor in/near Memory Scalable and Fast Overlay
= Existing PIMs: BRAM -> PE -> BRAM
= PiCaSO: Src (BRAM, Stream) -> OpMux -> PE -> BRAM

Network
<NEWS Node NEWS
= X
BRAM | | B
E> NET :

General architecture of existing PIM designs PiCaSO Architecture

(%]
(NN}
a
©
=

[,

9
=
o

VY

OpMux

18

IMAGine Architecture

= In-Memory Accelerated GEMV engine overlay

FIFO-out FIFO-in
@I [T1 l [T] InputRegs

|l‘l“l|

ARKANSAS

Top-level Fanout Tree

v

Tile Controller

....... A

(Parameterized) ™

®

@[Je : :
> = =0
ol " PIM Array
e @ (PiCasO) ~ ¥ ¥ ¥
Sk ™ 3 12
pt - QEMV ‘é «
g P Tile Array g
8+ N

(a) Top-level architecture (b) GEMV Tile architecture

19

IMAGine: Key Improvements

= Faster clock than TPU v1 & v2 with equal or more MACs on Alveo US55
= Clock: 737 MHz (TPU 700MHz); MAC: 64K (TPU v1 64K, v2 16K)

= Faster GEMV compared to existing FPGA PIM accelerators

——— SPAR2 —— |IMAGine —— CCB/CoMeFa —— BRAMAC ---- |MAGine-slice4
4-bit 06 8-bit

16-bit 32-bit
2000

w
[
S 2
>
(S}

20

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Matrix Size —»
(a) GEMV Cycle Latency
—— SPAR2 —— IMAGine — CCB CoMeFa -=== IMAGine-slice4
4-bit 8-bit 16-bit 32-bit
30us

5us 10us / / /
T / 10us
[}
£ 0.5us
=

/’_’_——’_‘_—
50ns 0.1us 0.3us lus
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Matrix Size —» (b) GEMV Execution Time

Key Takeaway

PIM architecture for FPGA is an active reseadrch
topic with room for significant contributions!

21

