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Cellular Logic-in-Memory Array!

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract—As a direct q of larg le integrati
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of id y net-
works, or cells, When a small of ge is included in each
cell, the same array may be regarded either as a logically enhanced
memory array, or as a logic array whose elementary gates and con-
nections can be “programmed” to realize a desired logical behavior.

In this paper the specific engineering features of such cellular
logic-in-memory (CLIM) arrays are discussed, and one such special-
purpose array, a cellular sorting array, is described in detail to illus-
trate how these features may be achieved in a particular design. It is
shown how the cellular sorting array can be employed as a single-
address, multiword memory that keeps in order all words stored
within it. It can also be used as a content-addressed memory, a
pushdown memory, a buffer memory, and (with a lower logical
efficiency) a programmable array for the realization of arbitrary
switching functions. A second version of a sorting array, operating
on a different sorting principle, is also described.
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Memory: The Terasys

Massively Parallel

PIM Array

Maya Gokhale
David Sarnoff Research Center*

IMD processor arrays provide superior performance on fine-
grained massively parallel problems in which all parallel threads

do the same operations most of the time. However, this fine-

Bill Holmes and Ken lobst
Supercomputing Research

grained synchrony limits the application space of SIMD (single instruc
tion, multiple data) machines. If there are many alternative data-

Center dependent actions among the parallel threads, the total execution time
is the sum of the alternatives rather than the maximum single-thread

The work reported here was done while the author
wus at the Supercomputing Research Center, Bowie,

execution time. Additionally, if the application is not inherently load-

Maryland.

balanced, performance can degrade seriously: Most of the processors
finish their work quickly and become idle, while a few processorsend up
with the lion's share of the work, Thus, the economics of purchasing a
high-performance computer often dictate giving up peak performance
on asmall application set (massively parallel SIMD) in favor of more mod-
est improvement over a larger range of applications (general-purpose



= Main idea: Put memory and processor together (same chip)

What is Processor-in-Memory (PIM)

CPU
ALU

RAM
SRAM | | SRAM
SRAM | | SRAM

Classic von Neumann Architecture
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= C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. lyer, D. Sylvester, D. Blaauw, and R. Das, “Neural Cache: Bit-Serial in-Cache
Acceleration of Deep Neural Networks,” in 2018 ACM/IEEE 45Th annual international symposium on computer architecture
(ISCA), 2018, pp. 383-396.
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Why Do We Need PIM Architectures?

= What happens in the CPU when you add two vectors?
= C = A+B; AB,C are vectors of 1000 elements

= result[i] = arrayl[i] + array2[i];
= read arrayl[i] to register R1

= read array2[i] to register R2

Most of the instructions (90%) are spent on control sequence!
= add R1l, R2 and save to R3

= Write R3 to result[i]
void add_vector(int arrayl[], int array2[],

= for (int i = 0; i < size; i++) int result[], int size)
= increment i (R4) {
= read size to register R5 for (int i = 0; i < size; i++) {

- compare R4, R5 result[i] = arrayl[i] + array2[i];

= make a conditional jump }
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Why Do We Need PIM Architectures? s

= “The Memory Wall”

= Memory operations (read/write) are significantly slower than CPU
operations.

= Cycle latency from Wikipedia

= Corei9: 0.16 ns
= DDR5: 14 ns

Hitting the Memory Wall: Implications of the Obvious

Wm. A. Wulf
Sally A. McKee
Department of Computer Science
University of Virginia
(wulf | mckee}@virginia.edu

December 1994
This brief note points out something obvious — something the authors “knew” without

really understanding. With apologies to those who did understand, we offer it to those
others who, like us, missed the point.
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Why Do We Need PIM Architectures? s

= Memory access cost Domain-specific PIMs,
= 100x slower = Smaller arrays can be faster
= 100x more energy = PIM can minimize energy cost
= Narrow bus connection = Not limited by bus frequency or pin count
- Limited bus frequency = Match application access pattern
= Limited number of pins = Massive parallelism

= One word at a time

= Application requirements
= Different access patterns



Key Takeaway

PIM architectures can help with
memory-intensive applications.
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= What is an FPGA?
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Figure: AMD (Xilinx) Alveo U55 Datacenter Card (Virtex UltraScale+)
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Terminologies and Acronyms

= Accelerator: custom hardware for a specific application

= PIM, CIM, IMC: Processing-in-Memory, In-Memory Computing
= PE: Processing Element

= Overlay: Virtual architecture on top of reconfigurable fabric of FPGA
= BRAM: Block-RAM, 18K/20K/36K bit SRAM array

= LUT: A lookup-table based logic element in FPGAs FF
LUTRAM
BRAM
URAM
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Case Study: CCB/RIMA R

= Motivations:
= Compute Capable BRAM (CCB)
= Modifying BRAMs to implement CCB (PIM)
= The first proposal of custom-BRAM PIM for modern FPGASs
= Reconfigurable In-Memory Accelerator (RIMA) using CCB

= Publication

= X.Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi, C. Augustine, R. R. lyer, and R. Das, “Compute-
Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs,” 2021 IEEE 29th Annual International
Symposium on Field-Programmable CustomComputing Machines (FCCM), pp. 88-96, 2021.
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CCB Architecture

= Based on Neural-cache
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RIMA Architecture

= GEMV followed by non-linear function (activation)
=Fn(A . B) = Fn(a;.b, +a,.b, + ... + a,.b,)
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RIMA: Key improvements

= Compared with Intel’'s NPU and Microsoft’'s Brainwave architectures
= Average speedup of 1.25x and 3x respectively

= Roughly 10x faster than Nvidia Titan V GV100 GPU
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Case Study: PiCaSO/IMAGine

= Motivations:

= Achieving the fastest clock: BRAM Fmax
= Achieving linear scaling of peak-performance: 100% BRAM -> PIM

= Publications

= M. A. Kabir, E. Kabir, J. Hollis, E. Levy-Mackay, A. Panahi, J. Bakos, M. Huang, and D. Andrews, “FPGA Processor
In Memory Architectures (PIMs): Overlay or Overhaul ?” in 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). Gothenburg, Sweden: IEEE, Sep. 2023, pp. 109-115.

= M. A. Kabir, T. Kamucheka, N. Fredricks, J. Mandebi, J. Bakos, M. Huang, and D. Andrews, “IMAGine: An In-
Memory Accelerated GEMV Engine Overlay” in 2024 34th International Conference on Field-Programmable
Logic and Applications (FPL). Turin, Italy: IEEE, Sep. 2024.
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PiCaSO Architecture

= Processor in/near Memory Scalable and Fast Overlay
= Existing PIMs: BRAM -> PE -> BRAM
= PiCaSO: Src (BRAM, Stream) -> OpMux -> PE -> BRAM
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IMAGine Architecture

= In-Memory Accelerated GEMV engine overlay
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IMAGine: Key Improvements

= Faster clock than TPU v1 & v2 with equal or more MACs on Alveo US55
= Clock: 737 MHz (TPU 700MHz); MAC: 64K (TPU v1 64K, v2 16K)

= Faster GEMV compared to existing FPGA PIM accelerators
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Key Takeaway

PIM architecture for FPGA is an active reseadrch
topic with room for significant contributions!
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