
Processor-In-Memory (PIM) Architectures

Domain Specific Architectures

Guest Lecturer
MD Arafat Kabir
Summer Graduate, PhD
Advisor: Dr. David Andrews
Dissertation: Deep-learning FPGA accelerator using PIM architecture

Earliest Publications

2

IEEE Transactions on Computers, 1969

Computer, 1995

What is Processor-in-Memory (PIM)

⁃ Main idea: Put memory and processor together (same chip)

3

CPU

Regfile

ALU

RAM

SRAM SRAM

SRAM SRAM

Address

Data

Classic von Neumann Architecture

PIM

SRAM

ALU

SRAM

ALU

SRAM

ALU

SRAM

ALU

PIM Architecture

SRAM Array

⁃ Image source: Google search

4

A Practical PIM Design: Cache-based

⁃ C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw, and R. Das, “Neural Cache: Bit-Serial in-Cache
Acceleration of Deep Neural Networks,” in 2018 ACM/IEEE 45Th annual international symposium on computer architecture
(ISCA), 2018, pp. 383–396.

5

Why Do We Need PIM Architectures?

⁃ What happens in the CPU when you add two vectors?
⁃ C = A+B; A,B,C are vectors of 1000 elements

⁃ result[i] = array1[i] + array2[i];
⁃ read array1[i] to register R1
⁃ read array2[i] to register R2
⁃ add R1, R2 and save to R3
⁃ Write R3 to result[i]

⁃ for (int i = 0; i < size; i++)
⁃ increment i (R4)
⁃ read size to register R5
⁃ compare R4, R5
⁃ make a conditional jump

6

void add_vector(int array1[], int array2[],
 int result[], int size)
{

for (int i = 0; i < size; i++) {
result[i] = array1[i] + array2[i];

 }
}

Most of the instructions (90%) are spent on control sequence!

Why Do We Need PIM Architectures?

⁃ “The Memory Wall”
⁃ Memory operations (read/write) are significantly slower than CPU

operations.

⁃ Cycle latency from Wikipedia
⁃ Corei9: 0.16 ns
⁃ DDR5: 14 ns

7

Why Do We Need PIM Architectures?

⁃ Memory access cost
⁃ 100x slower
⁃ 100x more energy

⁃ Narrow bus connection
⁃ Limited bus frequency
⁃ Limited number of pins
⁃ One word at a time

⁃ Application requirements
⁃ Different access patterns

8

Domain-specific PIMs,
⁃ Smaller arrays can be faster
⁃ PIM can minimize energy cost
⁃ Not limited by bus frequency or pin count
⁃ Match application access pattern
⁃ Massive parallelism

Key Takeaway

PIM architectures can help with
memory-intensive applications.

9

Case Study: PIM Architectures for FPGAs

Domain Specific Architectures

Guest Lecturer
MD Arafat Kabir
Summer Graduate, PhD
Advisor: Dr. David Andrews
Thesis: Deep-learning FPGA accelerator using PIM architecture

A Modern FPGA Internals

⁃ What is an FPGA?

11Figure: AMD (Xilinx) Alveo U55 Datacenter Card (Virtex UltraScale+)

DSP
BRAM

CLB-L

CLB-M

Terminologies and Acronyms

⁃ Accelerator: custom hardware for a specific application
⁃ PIM, CIM, IMC: Processing-in-Memory, In-Memory Computing
⁃ PE: Processing Element
⁃ Overlay: Virtual architecture on top of reconfigurable fabric of FPGA
⁃ BRAM: Block-RAM, 18K/20K/36K bit SRAM array
⁃ LUT: A lookup-table based logic element in FPGAs

12

FF
LUTRAM

BRAM

URAM

HBM/DDR

Bi
gg

er

Fa
st

er

Case Study: CCB/RIMA

⁃ Motivations:
⁃ Compute Capable BRAM (CCB)
⁃ Modifying BRAMs to implement CCB (PIM)
⁃ The first proposal of custom-BRAM PIM for modern FPGAs
⁃ Reconfigurable In-Memory Accelerator (RIMA) using CCB

⁃ Publication
⁃ X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi, C. Augustine, R. R. Iyer, and R. Das, “Compute-

Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs,” 2021 IEEE 29th Annual International
Symposium on Field-Programmable CustomComputing Machines (FCCM), pp. 88–96, 2021.

13

CCB Architecture

⁃ Based on Neural-cache

14

RIMA Architecture
⁃ GEMV followed by non-linear function (activation)
⁃ Fn(A . B) = Fn(a1.b1 + a2.b2 + … + an.bn)

15

RIMA: Key improvements

⁃ Compared with Intel’s NPU and Microsoft’s Brainwave architectures
⁃ Average speedup of 1.25x and 3x respectively

⁃ Roughly 10x faster than Nvidia Titan V GV100 GPU

16

Case Study: PiCaSO/IMAGine

⁃ Motivations:
⁃ Achieving the fastest clock: BRAM Fmax
⁃ Achieving linear scaling of peak-performance: 100% BRAM -> PIM

⁃ Publications
⁃ M. A. Kabir, E. Kabir, J. Hollis, E. Levy-Mackay, A. Panahi, J. Bakos, M. Huang, and D. Andrews, “FPGA Processor

In Memory Architectures (PIMs): Overlay or Overhaul ?” in 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL). Gothenburg, Sweden: IEEE, Sep. 2023, pp. 109–115.

⁃ M. A. Kabir, T. Kamucheka, N. Fredricks, J. Mandebi, J. Bakos, M. Huang, and D. Andrews, “IMAGine: An In-
Memory Accelerated GEMV Engine Overlay” in 2024 34th International Conference on Field-Programmable
Logic and Applications (FPL). Turin, Italy: IEEE, Sep. 2024.

17

PiCaSO Architecture

⁃ Processor in/near Memory Scalable and Fast Overlay
⁃ Existing PIMs: BRAM -> PE -> BRAM
⁃ PiCaSO: Src (BRAM, Stream) -> OpMux -> PE -> BRAM

18

General architecture of existing PIM designs

BRAM
(SRAM)

bi
t-s

er
ia

l P
EsPort-A

Port-B

PiCaSO Architecture

PEs

IMAGine Architecture

⁃ In-Memory Accelerated GEMV engine overlay

19

(PiCaSO)

IMAGine: Key Improvements
⁃ Faster clock than TPU v1 & v2 with equal or more MACs on Alveo U55

⁃ Clock: 737 MHz (TPU 700MHz); MAC: 64K (TPU v1 64K, v2 16K)

⁃ Faster GEMV compared to existing FPGA PIM accelerators

20

Key Takeaway

PIM architecture for FPGA is an active research
topic with room for significant contributions!

21

