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Performance Models

Modern architectures are complicated!

[ How much data is transfered between memory levels? |

Intel Haswell CPU!
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CARM L2 L3 DRAM
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NVIDIA Volta GPU? utilization | | utilization | | utilization |
V|nstructior:‘ Issue-Efficiency Ca;_he Hit/MiSS ] ;ache l‘:"t/MiSS Utilization |
Instruction Pipeline Statistics Utilization Utilization by Op Type
' Stall Reasons Efficiency || Utilization by Client
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Performance Models Ne

= Many components contribute to the kernel run time
= An interplay of application characteristics and machine characteristics

e = Roofline Model
#FP operations FLOP/s \/

f
: Cache data movement Cache GB/s |
| DRAM data movement DRAM GB/s |
\_ PCle data movement  PCle bandwidth
MPI Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
#MPI Wait's Network Latency

IO File systems
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Roofline Performance Model NERSC

= Sustainable performance is bound by A

Peak GFLOP/s Peak GFLOP/s
GFLOP/s = min @
I {AI * Peak GB/s S
G
= Arithmetic Intensity (Al) = 3
FLOPs / Bytes g andwidth-bound: Compute-bound
= How did this come about? Arithmetic Intensity (FLOP:Byte)
- A CPU DRAM example Transition @ Al ==

Peak GFLOP/s | Peak GB/s ==
‘Machine Balance’
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(CPU DRAM) Roofline

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth
#FP ops / Peak GFLOP/s (GBs)
Time = max DRAM
#Bytes | Peak GB/s (data, GB)
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v 4
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(CPU DRAM) Roofline

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth

i 1/ Peak GFLOP/s (GBis)

Time _ max

FP - DI:AM

#FP ops #Bytes | #FP ops / Peak GB/s (data, GB)
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v 4
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(CPU DRAM) Roofline

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM) cPU
(compute, FLOP/s)
DRAM Bandwidth
Peak GFLOP (GBs)
#FP ops _ . eak GFLOP/s
Time ™" e
(#FP ops / #Bytes) * Peak GB/s (data, GB)
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(CPU DRAM) Roofline

= One could hope to always attain peak performance (FLOP/s)
= However, finite locality (reuse) and bandwidth limit performance.

= Assume:
Idealized processor/caches
Cold start (data in DRAM)

Peak GFLOP/s
GFLOP/s = min
Al * Peak GB/s

Arithmetic Intensity (Al) = FLOPs / Bytes (as presented to DRAM )
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Roofline Performance Model NERSC

= Thus we obtain the model as A

Peak GFLOP/s Peak GFLOP/s
FLOP/s = mi @
GFLOP/s mln<[AI * Peak GB/s S
G
where Arithmetic Intensity (Al) is 3
FLOPs / Bytes g andwidth-bound 1 Compute-bound
Machine Balance (FLOPs/Byte) = Arithmetic Intensity (FLOP:Byte)
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM) Transition @ Al ==

Peak GFLOP/s | Peak GB/s ==
‘Machine Balance’

Office of

U.S. DEPARTMENT OF
e ENERGY Science 10




Roofline Performance Model N

A throughput-oriented model
- tracks rates not times, i.e. GFLOP/s, GB/s, not seconds

An abstraction over
- architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
- programming models, programming languages
- numerical algorithms, problem sizes

In log-log scale to easily extrapolate performance along Moore’s Law
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More Advanced on Roofline
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Roofline Performance Model NERSC

= This is a single Roofline A

Peak GFLOP/s

=  What about the memory hierarchy,
different execution configurations,
and instruction mixes?

Attainable GFLOP/s

|
andwidth-bound | Compute-bound
<«<T>

- Hierarchical Roofline Arithmetic Intensity (FLOP:'Byte)

-> Multiple compute ceilings Transition @ Al ==

Peak GFLOP/s | Peak GB/s ==
‘Machine Balance’
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Hierarchical Roofline NEeF

>
<
o
)

Superposition of multiple Rooflines
- Incorporate full memory hierarchy
— Arithmetic Intensity =
FLOPs / Bytes, 4/, o/nupw/

Attainable GFLOP/s

Each kernel will have multiple Al’'s

but one observed GFLOP/s performance

Hierarchical Roofline tells you about cache locality
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Multiple Compute Ceilings NE:

Impact of execution configuration #cru

Threaded Peak

Actual
Concurrency

Concurrency affects your peak
- OpenMP thread concurrency
- SM occupancy
- load balance
- threadblock/thread configuration

Single Thread

Attainable GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Performance is bound by the actual concurrency ceiling

Office of

U.S. DEPARTMENT OF
@ ENERGY =2 15




Multiple Compute Ceilings NE:

Impact of instruction mix A
. . . o FMA.f64 Peak
Applications are usually a mix § = Qe nune ZaDrS;L:'\gé\ak
of FMA.f64, ADD.f64, MUL.f64... Q)
Performance is a weighted average =
... bound by a partial FMA ceiling .
Arithmetic Intensity (FLOP:Byte)
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Roofline Drives Optimization
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Roofline Performance Model NG
The Roofline Model Haswell Roofline Optimization Path

helps you identify the bottlenecks e

guides you through optimization 1000 /—‘ - LI:\TX

tells you when to stop j - o =e=BGW
< 100 /5) 3,4 3
S s 2
R 1 /

—_
(@]

An example:
NESAP for Cori - BerkeleyGW

w

N

1
0.01 2 5 01 2 5 1 2 5 10 2 5 100

Arithmetic Intensity
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Roofline Example: BerkeleyGW

Optimization Path for Kernel-C (Sigma):

1. Add OpenMP

2. Initial Vectorization
loop reordering
conditional removal

3. Cache-Blocking

4. Improved Vectorization
divides

5. Hyper-threading

Walltime (Sec)

Office of
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200

Sigma Optimization Process

H Haswell
® KNL (DDR)
= KNL (HBM)

150
100

50

1 2 3 4 5 6
Optimization Step




General Optimization Strategy NE

= Broadly speaking, three approaches A
to improving performance:

Peak FLOP/s

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)
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General Optimization Strategy NE

= Broadly speaking, three approaches
to improving performance:

= Maximize compute performance

multithreading
vectorization

increase SM occupancy
utilize FMA instructions
minimize thread divergence
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Attainable FLOP/s

Peak FLOP/s

Arithmetic Intensity (FLOP:Byte)




General Optimization Strategy NE

= Broadly speaking, three approaches A
to improving performance:

= Maximize compute performance

Peak FLOP/s

= Maximize memory bandwidth
= utilize higher-level caches
= NUMA-aware allocation
= avoid H-D transfers
= avoid uncoalesced memory access

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)
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General Optimization Strategy NEF

= Broadly speaking, three approaches A
to improving performance:

= Maximize compute performance

Peak FLOP/s

= Maximize memory bandwidth

Attainable FLOP/s

= Improve Al

ICurrent Al
Compulsory Al

= minimize data movement
= exploit cache reuse

Arithmetic Intensity (FLOP:Byte)

U.S. DEPARTMENT OF Office of

EN ERGY Science 23




Roofline Data Collection
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Pen and Paper

v 4
)
J

= Example #1: STREAM Triad

for(i=0;i<N;i++){

z[1] = X[1] + alpha*Y[i];
}

2 FLOPs per iteration
Transfer 24 bytes per iteration
- read X[i], Y[i], and write Z[i]

Al = 0.083 FLOPs per byte
Memory bound
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Attainable FLOP/s

Peak FLOP/s

RIAD |

' >

0.083 5.1
Arithmetic Intensity (Flop:Byte)




Pen and Paper A

= Example #2: 7-pt stencil
« 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
« Cache canfilter all but 1 read and 1 write per pt A
« Al =0.44 FLOPs per byte
Memory bound, but 5x the GFLOP/s rate Peak FLOP/s

for(k=1;k<dim+1;k++){

for(j=1;j<dim+1l;j++){

for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k 1[j 1[i ]
old[k 1[3 I[i-1]

GFLOIP/S < Al * DRAM GB/s

|
7-point Stencil
|

Attainable FLOP/s

old[k 1[j 1[i+1]
old[k J[j-1][1 ]
old[k J[j+1][1 ]
old[k-11[7 1[i ]
old[k+1]1[3 1[1 1;

0.083 044 5.1
) Arithmetic Intensity (Flop:Byte)
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Pen and Paper *

Not scalable for real-life applications
Millions of lines of code; mix of different languages

Complicated modern architecture
- memory hierarchy, caching effects
- ISA

Different problem sizes
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We Need Tools!

Performance [GFLOP/sec]

104 B
O FMA: 7068.9 GFLOP/s

p b'
)
)
|~
N
No-FMA: 3535.8 GFLOP/s

103j

100 ' 1o
Arithmetic Intensity [FLOPs/Byte]
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Roofline ceilings

- vendor specifications

- empirical measurements
- ERT

- https://bitbucket.org/be
rkeleylab/cs-roofline-
toolkit




We Need Tools!

Performance [GFLOP{sec]

104f

FMA: 7068.9 GFLOP/s

No-

FMA: 3535.8 GFLOP/s

103 -

-l |

Where to put these dots?

L2

|

HBM| | ® Kernel

R ]
Arithmetic Intensity [FLOPs/Byte]
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Performance [GFLOP{sec]

)
J

We Need Tools! )

Require three raw measurements:
o] — Runtime
; & — FLOPs

Q FMA: 7068.9 GFLOP/s

| f%‘" / / — Bytes (on each cache level)

[ o

1 No-FMA: 3535.8 GFLOP/s

’ <‘ In order to calculate Al and GFLOP/s:

Where to put these dots? , , , FLOPs
- — Arithmetic Intensity = Data Moverment
| - L (FLOPs/Byte)
mem HBM| [ ® Kernel| FLOP
o ) o ) ) iy 1 ) ' S 2 S
10 Arithmetic Intensity l[FLOIngIByte] 10 Performance = m

(GFLOP/s)
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Methodology to Construct Roofline NE

1. Collect Roofline ceilings
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)
- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

2. Collect application performance
- FLOPs, bytes (DRAM, L2, ...), runtime
- SDE, VTune, LIKWID, Advisor, nvprof, ...

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

Office of

U.S. DEPARTMENT OF
@ ENERGY =2 31




Automated Data Collection

U.S. DEPARTMENT OF ofﬂce of

EN ERGY Science




Data Collection on Intel CPUs 2

The not-so-automated way 1: : Nﬁﬁsc il =
- Intel SDE for FLOPs (emulation) e
+ Intel VTune for DRAM bytes (HW counters)

- Runtime

MEASURING ARITHMETIC INTENSITY

1 Pt Cf g o s L

- DRAM Roofline only

- Used by NESAP for Cori

- NERSC Exascale Science Application Program
- http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
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2P HSW

KNL

Data Collection on Intel CPUs

MFDn

0.1

10000 10000
1000 A 1000
5 / «===Roofline Model S
g 100 = =wo/FMA g 100
G /c i 1RHS ]
10 A 4RHS 10
< 8RHS
1 T T 1 1
0.01 0.1 1 10
Arithmetic Intensity (FLOP/byte)
10000 10000
1000 / 1000
S e===Roofline Model £
S 100 ‘ = “wo/FMA S 100
G - i 1RHS c
10 | 10
/A 4 RHS
< 8RHS
1 T T | 1
0.01 0.1 1 10

Arithmetic Intensity (FLOP/byte)
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===Roofline Model
= *wo/FMA

i Original

A SELL

& SB

1 SELL+SB

© nRHS+SELL+SB

1 10
Arithmetic Intensity (FLOP/byte)

===Roofline Model
= =wo/FMA
i Original
A SELL
& SB
| M SELL+SB
0,‘1 1 1‘0 © nRHS+SELL+SB
Arithmetic Intensity (FLOP/byte)

8

10000

1000

100

GFLOP/s

10

1

10000

1000

100

GFLOP/s

10

1

DRAM Rooflines of NESAP Codes

PICSAR

==  e==Roofline Model
% = =wo/FMA
= A I Original
A w/Tiling
< w/Tiling+Vect
0.1 1 10
Arithmetic Intensity (FLOP/byte)
«===Roofline Model
= owo/FMA
L~ ¢
i Original
[ARY
L A w/Tiling
< w/Tiling+Vect
0.1 1 10

Arithmetic Intensity (FLOP/byte)




Data Collection on Intel CPUs NEeF

AMReX Application Characterization

The not-so-automated way 2: 1024 R
==lL3
- LIWID for FLOPs and bytes 512 R
- Both are based on HW counters ém
. ~ 128
- Runtime 5
2 64
2
D 32
- Hierarchical Roofline o
8 —_ —_ — —_ — —_ —_ —_ —_ —
. Limited by quality of HW counters EEEEEEERER
. - . o ¢ 5 § x = £ s x %
- High-level characterization, no callstack I I N B B
T s 8 o

https://github.com/RRZE-HPC/likwid
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Data Collection on Intel CPUs

The fully automated way:

U.S. DEPARTMENT OF

Intel Advisor, Roofline feature

- one dot per loop nest/function

FLOPs, bytes and runtime

Hierarchical Roofline

Office of

ENERGY Science

Instrument applications automatically

Integrates with other Advisor capabilities
Benchmarks target system

36

Use Single-Threaded Roofs @

B FREL

100

1

Qoo 10000 1.0e+5

Arithmetic Inte

Time
suu|prD°wn|C'°¢eNqu| m[ & Wiy o Vectarizstiont |

035 Assemoly Total Time | % | Seif Time
| Eiretian) 0410740 Hlock 1: 146029716

0%4107d0 492 m.shn Sorbip 0,020¢ 0.0205
Ox4107d1 453 o %rsp, b 00108 D.010s
0x4107d4 492 _sub so 10, srs
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Data Collection on NVIDIA GPUs NEeF

Still very manual at this stage, but...

Runtime:
- Internal timers or nvprof --print-gpu-trace

FLOPs:

- DP/SP/HP counters and metrics, nvprof --metrics
‘flop count dp/sp/hp’ oOr "tensor precision fu utilization’

Bytes for different cache levels:
- Bytes = (read transactions + write transactions) x transaction size

- nvprof --metrics ‘metric_name’ e.9. gld/gst transactions

Hierarchical Roofline
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Summary NG

The Roofline Model formulizes the interaction between machine
characteristics and application characteristics, and guides optimization

- Peak computational throughput and bandwidth
- Arithmetic intensity, cache locality, instruction mix...

Automate Roofline data collection
- Intel CPUs
Intel SDE + Intel VTune, Intel Advisor More in the
- NVIDIA GPUs
nvprof, Nsight Compute

next few talks!
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LBNL CRD Roofline Research:
https://crd.Ibl.gov/departments/computer-science/PAR/research/roofline
Empirical Roofline Toolkit (ERT):
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

Python scripts for plotting manually-collected Roofline:
https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting
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