
Charlene Yang
Lawrence Berkeley National Laboratory

Jun 16 2019, Frankfurt

Introduction to the Roofline Model

Performance Models

The Maze of Performance Optimization The Map !!!

2

Performance Models
Modern architectures are complicated!

1.	https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor
2.	http://on-demand.gputechconf.com/gtc/2016/presentation/s6659-avinash-baliga-perfworks.pdf

Intel Haswell CPU1

NVIDIA Volta GPU2

Performance Models
§ Many components contribute to the kernel run time
§ An interplay of application characteristics and machine characteristics

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
MPI Message Size

MPI Send:Wait ratio
#MPI Wait’s

IO

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
Network Bandwidth
Network Gap
Network Latency
File systems

Roofline Model

4

Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example

Peak GFLOP/s

A
tt
a
in

a
b
le

 G
F

L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

5

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

486

= max

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

497

= min

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM) CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)Peak GFLOP/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s

508

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM)

CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)

519

Roofline Performance Model

§ Thus we obtain the model as

where Arithmetic Intensity (AI) is

FLOPs / Bytes

• Machine Balance (FLOPs/Byte) =
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM)

Peak GFLOP/s

A
tt
a
in

a
b
le

 G
F

L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

10

Bandwidth-bound Compute-bound

Peak GFLOP/sGFLOP/s = min AI * Peak GB/s

Roofline Performance Model

• A throughput-oriented model
– tracks rates not times, i.e. GFLOP/s, GB/s, not seconds

• An abstraction over
– architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
– programming models, programming languages
– numerical algorithms, problem sizes

• In log-log scale to easily extrapolate performance along Moore’s Law

11

More Advanced on Roofline

Roofline Performance Model

§ This is a single Roofline

§ What about the memory hierarchy,
different execution configurations,
and instruction mixes?

à Hierarchical Roofline
à Multiple compute ceilings

Peak GFLOP/s

A
tt
a
in

a
b
le

 G
F

L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

13

Bandwidth-bound Compute-bound

Hierarchical Roofline

• Superposition of multiple Rooflines
– Incorporate full memory hierarchy
– Arithmetic Intensity =

FLOPs / BytesL1/L2/HBM/SysMem

• Each kernel will have multiple AI’s
but one observed GFLOP/s performance

• Hierarchical Roofline tells you about cache locality

A
tt
a
in

a
b
le

 G
F

L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

14

High Reuse

V100

• Impact of execution configuration

• Concurrency affects your peak
– OpenMP thread concurrency
– SM occupancy
– load balance
– threadblock/thread configuration

• Performance is bound by the actual concurrency ceiling

Threaded Peak

Multiple Compute Ceilings

A
tt
a
in

a
b
le

 G
F

L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

Single Thread

15

CPU

Actual
Concurrency

FMA.f64 Peak

Multiple Compute Ceilings

• Impact of instruction mix

• Applications are usually a mix
of FMA.f64, ADD.f64, MUL.f64…

• Performance is a weighted average
… bound by a partial FMA ceiling

A
tt
a
in

a
b
le

 G
F

L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

ADD.f64 Peak

16

Partial FMA

Roofline Drives Optimization

Roofline Performance Model

The Roofline Model
• helps you identify the bottlenecks
• guides you through optimization
• tells you when to stop

An example:
• NESAP for Cori - BerkeleyGW

18

Roofline Example: BerkeleyGW

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization

• divides
5. Hyper-threading

19

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

Peak FLOP/s

No FMA

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

2320

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance
§ multithreading
§ vectorization
§ increase SM occupancy
§ utilize FMA instructions
§ minimize thread divergence

Peak FLOP/s

No FMA

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

2421

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance

§ Maximize memory bandwidth
§ utilize higher-level caches
§ NUMA-aware allocation
§ avoid H-D transfers
§ avoid uncoalesced memory access

Peak FLOP/s

No FMA

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

2522

General Optimization Strategy

§ Broadly speaking, three approaches
to improving performance:

§ Maximize compute performance

§ Maximize memory bandwidth

§ Improve AI
§ minimize data movement
§ exploit cache reuse

Peak FLOP/s

No FMA

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (FLOP:Byte)

C
o
m

p
u
ls

o
ry

 A
I

C
u
rr

e
n
t
A

I

2623

Roofline Data Collection

Pen and Paper

§ Example #1: STREAM Triad

• 2 FLOPs per iteration
• Transfer 24 bytes per iteration

• read X[i], Y[i], and write Z[i]

• AI = 0.083 FLOPs per byte
• Memory bound

A
tt
a
in

a
b
le

 F
L
O

P
/s

Arithmetic Intensity (Flop:Byte)

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s

1025

5.1

Pen and Paper
§ Example #2: 7-pt stencil

• 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
• Cache can filter all but 1 read and 1 write per pt
• AI = 0.44 FLOPs per byte
• Memory bound, but 5x the GFLOP/s rate

A
tt
a
in

a
b
le

 F
L
O

P
/s

7-point Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak FLOP/s

for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k][j][i]
+ old[k][j][i-1]
+ old[k][j][i+1]
+ old[k][j-1][i]
+ old[k][j+1][i]
+ old[k-1][j][i]
+ old[k+1][j][i];

}}}

1126

5.1

Pen and Paper

• Not scalable for real-life applications

• Millions of lines of code; mix of different languages

• Complicated modern architecture
– memory hierarchy, caching effects
– ISA

• Different problem sizes

27

We Need Tools!

28

• Roofline ceilings
– vendor specifications
– empirical measurements

• ERT
• https://bitbucket.org/be

rkeleylab/cs-roofline-
toolkit

We Need Tools!

29

Where to put these dots?

Require three raw measurements:
– Runtime
– FLOPs
– Bytes (on each cache level)

In order to calculate AI and GFLOP/s:

We Need Tools!

Performance	=	 FLOPsRuntime 		

Arithmetic	Intensity	=	 FLOPs
Data	Movement

(GFLOP/s)

(FLOPs/Byte)

30

Where to put these dots?

Methodology to Construct Roofline

1. Collect Roofline ceilings
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

2. Collect application performance
– FLOPs, bytes (DRAM, L2, …), runtime
– SDE, VTune, LIKWID, Advisor, nvprof, …

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline

31

Automated Data Collection

Data Collection on Intel CPUs

The not-so-automated way 1:
• Intel SDE for FLOPs (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

33

Data Collection on Intel CPUs

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"
1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

SELL"

SB"

SELL+SB"

nRHS+SELL+SB"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P/
s"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"2P
 H

SW
K

N
L

MFDn PICSAREMGeo

DRAM Rooflines of NESAP Codes

Data Collection on Intel CPUs

The not-so-automated way 2:
• LIWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack

8

16

32

64

128

256

512

1024

H
P

G
M

G
 (

3
2

P
x1

T
)

H
P

G
M

G
 (

4
P

x8
T

)

C
o

m
b

u
st

o
r (

3
2

P
x1

T
)

C
o

m
b

u
st

o
r (

4
P

x8
T

)

M
F

IX
 (

3
2

P
x1

T
)

N
yx

 (
3

2
P

x1
T

)

N
yx

 (
4

P
x8

T
)

P
e

le
L

M
 (3

2
P

x1
T

)

W
a

rp
X

 (
3

2
P

x1
T

)

W
a

rp
X

 (
4

P
x8

T
)

B
a
n
d
w

id
th

(G
B

/s
)

AMReX Application Characterization
(2Px16c HSW == Cori Phase 1)

L2
L3
DRAM
Roofline

https://github.com/RRZE-HPC/likwid

3235

Data Collection on Intel CPUs

The fully automated way:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system

Memory-bound, invest into
cache blocking etc

Compute bound: invest
into SIMD,..

3336

Data Collection on NVIDIA GPUs
• Still very manual at this stage, but…

• Runtime:
– Internal timers or nvprof --print-gpu-trace

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline
37

Summary

• The Roofline Model formulizes the interaction between machine
characteristics and application characteristics, and guides optimization

– Peak computational throughput and bandwidth
– Arithmetic intensity, cache locality, instruction mix…

• Automate Roofline data collection
– Intel CPUs

• Intel SDE + Intel VTune, Intel Advisor
– NVIDIA GPUs

• nvprof, Nsight Compute

More in the
next few talks!

38

Reference

• S. Williams, A. Waterman and D. Patterson, “Roofline: An Insightful Visual
Performance Model for Multicore Architectures,” Communications of the
ACM, vol. 52, no. 4, pp. 65–76, 2009

• LBNL CRD Roofline Research:
https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

• Empirical Roofline Toolkit (ERT):
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

• Python scripts for plotting manually-collected Roofline:
https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

39

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

40

Thank You

