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Introduction to the Roofline Model



Performance Models

The Maze of Performance Optimization The Map !!! 
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Performance Models
Modern architectures are complicated!

1.	https://software.intel.com/en-us/articles/integrated-roofline-model-with-intel-advisor
2.	http://on-demand.gputechconf.com/gtc/2016/presentation/s6659-avinash-baliga-perfworks.pdf

Intel Haswell CPU1

NVIDIA Volta GPU2



Performance Models
§ Many components contribute to the kernel run time
§ An interplay of application characteristics and machine characteristics 

#FP operations
Cache data movement
DRAM data movement

PCIe data movement
MPI Message Size

MPI Send:Wait ratio
#MPI Wait’s

IO

FLOP/s
Cache GB/s
DRAM GB/s
PCIe bandwidth
Network Bandwidth
Network Gap
Network Latency
File systems

Roofline Model

4



Roofline Performance Model

§ Sustainable performance is bound by

§ Arithmetic Intensity (AI) =  

FLOPs / Bytes

§ How did this come about?
à A CPU DRAM example
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Peak GFLOP/sGFLOP/s = min AI * Peak GB/s



(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

#FP ops / Peak GFLOP/s
Time = max

#Bytes / Peak GB/s

CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)
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= max

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

1 / Peak GFLOP/sTime
#FP ops #Bytes / #FP ops / Peak GB/s

CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)
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= min

(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM) CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)Peak GFLOP/s#FP ops

Time (#FP ops / #Bytes) * Peak GB/s
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(CPU DRAM) Roofline

§ One could hope to always attain peak performance (FLOP/s)
§ However, finite locality (reuse) and bandwidth limit performance.
§ Assume:

• Idealized processor/caches
• Cold start (data in DRAM)

Peak GFLOP/s
GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = FLOPs / Bytes (as presented to DRAM )

CPU

(compute, FLOP/s)

DRAM
(data, GB)

DRAM Bandwidth
(GB/s)
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Roofline Performance Model

§ Thus we obtain the model as

where Arithmetic Intensity (AI) is  

FLOPs / Bytes

• Machine Balance (FLOPs/Byte) = 
8.9 (V100, DP, HBM) or 5.1 (KNL, DP, HBM)
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Peak GFLOP/sGFLOP/s = min AI * Peak GB/s



Roofline Performance Model

• A throughput-oriented model
– tracks rates not times, i.e. GFLOP/s, GB/s, not seconds 

• An abstraction over 
– architectures, ISA (CPU, GPU, Haswell, KNL, Pascal, Volta)
– programming models, programming languages 
– numerical algorithms, problem sizes

• In log-log scale to easily extrapolate performance along Moore’s Law
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More Advanced on Roofline



Roofline Performance Model

§ This is a single Roofline

§ What about the memory hierarchy, 
different execution configurations, 
and instruction mixes?

à Hierarchical Roofline
à Multiple compute ceilings
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Hierarchical Roofline

• Superposition of multiple Rooflines
– Incorporate full memory hierarchy 
– Arithmetic Intensity =

FLOPs / BytesL1/L2/HBM/SysMem

• Each kernel will have multiple AI’s 
but one observed GFLOP/s performance

• Hierarchical Roofline tells you about cache locality
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• Impact of execution configuration

• Concurrency affects your peak 
– OpenMP thread concurrency 
– SM occupancy
– load balance
– threadblock/thread configuration

• Performance is bound by the actual concurrency ceiling

Threaded Peak

Multiple Compute Ceilings
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FMA.f64 Peak

Multiple Compute Ceilings

• Impact of instruction mix

• Applications are usually a mix 
of FMA.f64, ADD.f64, MUL.f64…

• Performance is a weighted average
… bound by a partial FMA ceiling
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Roofline Drives Optimization



Roofline Performance Model

The Roofline Model  
• helps you identify the bottlenecks 
• guides you through optimization
• tells you when to stop 

An example:
• NESAP for Cori - BerkeleyGW
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Roofline Example: BerkeleyGW

Optimization Path for Kernel-C (Sigma):
1. Add OpenMP
2. Initial Vectorization 

• loop reordering
• conditional removal

3. Cache-Blocking
4. Improved Vectorization 

• divides
5. Hyper-threading
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General Optimization Strategy  

§ Broadly speaking, three approaches 
to improving performance:

Peak FLOP/s

No FMA
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General Optimization Strategy 

§ Broadly speaking, three approaches 
to improving performance:

§ Maximize compute performance
§ multithreading
§ vectorization
§ increase SM occupancy
§ utilize FMA instructions
§ minimize thread divergence
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General Optimization Strategy 

§ Broadly speaking, three approaches     
to improving performance:

§ Maximize compute performance 

§ Maximize memory bandwidth
§ utilize higher-level caches
§ NUMA-aware allocation
§ avoid H-D transfers
§ avoid uncoalesced memory access
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General Optimization Strategy 

§ Broadly speaking, three approaches 
to improving performance:

§ Maximize compute performance 

§ Maximize memory bandwidth 

§ Improve AI
§ minimize data movement 
§ exploit cache reuse
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Roofline Data Collection



Pen and Paper

§ Example #1:    STREAM Triad

• 2 FLOPs per iteration
• Transfer 24 bytes per iteration 

• read X[i], Y[i], and write Z[i]

• AI = 0.083 FLOPs per byte 
• Memory bound
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for(i=0;i<N;i++){
Z[i] = X[i] + alpha*Y[i];

}

0.083

Peak FLOP/s
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Pen and Paper
§ Example #2:    7-pt stencil

• 7 FLOPs; 8 memory references (7 reads, 1 store) per pt
• Cache can filter all but 1 read and 1 write per pt
• AI = 0.44 FLOPs per byte 
• Memory bound, but 5x the GFLOP/s rate
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7-point Stencil

GFLOP/s ≤ AI * DRAM GB/s

TRIAD

Arithmetic Intensity (Flop:Byte)
0.083 0.44

Peak FLOP/s

for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){

new[k][j][i] = -6.0*old[k  ][j  ][i ] 
+ old[k  ][j  ][i-1]
+ old[k  ][j  ][i+1]
+ old[k  ][j-1][i ]
+ old[k  ][j+1][i ]
+ old[k-1][j  ][i ]
+ old[k+1][j  ][i ];

}}}
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Pen and Paper

• Not scalable for real-life applications

• Millions of lines of code; mix of different languages

• Complicated modern architecture
– memory hierarchy, caching effects 
– ISA

• Different problem sizes
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We Need Tools!

28

• Roofline ceilings
– vendor specifications
– empirical measurements

• ERT
• https://bitbucket.org/be

rkeleylab/cs-roofline-
toolkit



We Need Tools!
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Where to put these dots?



Require three raw measurements:
– Runtime
– FLOPs
– Bytes (on each cache level)

In order to calculate AI and GFLOP/s:

We Need Tools!

Performance	=	 FLOPsRuntime 		

Arithmetic	Intensity	=	 FLOPs
Data	Movement

(GFLOP/s)

(FLOPs/Byte)
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Where to put these dots?



Methodology to Construct Roofline 

1. Collect Roofline ceilings
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit 

2. Collect application performance
– FLOPs, bytes (DRAM, L2, …), runtime
– SDE, VTune, LIKWID, Advisor, nvprof, …

3. Plot Roofline with Python Matplotlib (or other tools of your preference)
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://github.com/cyanguwa/nersc-roofline
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Automated Data Collection



Data Collection on Intel CPUs

The not-so-automated way 1:
• Intel SDE for FLOPs  (emulation)
• Intel VTune for DRAM bytes (HW counters)
• Runtime

• DRAM Roofline only

• Used by NESAP for Cori
– NERSC Exascale Science Application Program
– http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

33



Data Collection on Intel CPUs
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Data Collection on Intel CPUs

The not-so-automated way 2:
• LIWID for FLOPs and bytes

– Both are based on HW counters
• Runtime

• Hierarchical Roofline

• Limited by quality of HW counters
• High-level characterization, no callstack
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Data Collection on Intel CPUs

The fully automated way:
• Intel Advisor, Roofline feature
• Instrument applications automatically

– one dot per loop nest/function
• FLOPs, bytes and runtime

• Hierarchical Roofline

• Integrates with other Advisor capabilities
• Benchmarks target system 

Memory-bound, invest into 
cache blocking etc

Compute bound: invest 
into SIMD,..
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Data Collection on NVIDIA GPUs
• Still very manual at this stage, but…

• Runtime: 
– Internal timers or nvprof --print-gpu-trace 

• FLOPs:
– DP/SP/HP counters and metrics, nvprof --metrics 

‘flop_count_dp/sp/hp’ or `tensor_precision_fu_utilization’

• Bytes for different cache levels:
– Bytes = (read transactions + write transactions) x transaction size
– nvprof --metrics ‘metric_name’ e.g. gld/gst_transactions

• Hierarchical Roofline
37



Summary

• The Roofline Model formulizes the interaction between machine 
characteristics and application characteristics, and guides optimization

– Peak computational throughput and bandwidth
– Arithmetic intensity, cache locality, instruction mix…

• Automate Roofline data collection
– Intel CPUs

• Intel SDE + Intel VTune, Intel Advisor
– NVIDIA GPUs

• nvprof, Nsight Compute

More in the 
next few talks!
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