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The Problem

Computing
IS Bottlenecked by Data
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Data 1s Key tfor Al, ML., Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
o We need to perform more sophisticated analyses on more data
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Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute
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https://www.youtube.com/watch?v=x2-qB0J7KHw

Data 1s Key for Future Workloads

In-memory Databases
[Mao+, EuroSys’ | 2;
Clapp+ (Intel), [ISWC’15]

ST

In-Memory Data Analytics

[Clapp+ (Intel), ISWC’|5;
Awan+, BDCloud’ | 5]

SAFARI

Graph/Tree Processing
[Xu+, ISWC’12; Umuroglu+, FPL | 5]

Datacenter Workloads
[Kanev+ (Google), ISCA’| 5]




Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark’

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC’I 5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]

SAFARI 6




Data 1s Key for Future Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
VP9 VPY
© O VouTube @ O VouTube
Video Playback Vldeo Capture
Google’s video codec Google’s video codec
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Data Overwhelms Modern Machines

?

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

O O YoiTube © O Voulube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data is Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes
Sequenced e

2014 2015 2016 2017 Source: THumina
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Billions of Short Reads
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Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI
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A Computing System

= Three key components

= Computation
= Communication

= Storage/memory

Computing System
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

%
Computing E a Communication E a Memory/Storage
Unit Unit Unit
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Memory System Storage System

ﬁage sourceﬂftps:// Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/
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Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
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Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data

Yet, system is still bottlenecked by memory



A Solution: Deeper and Larger Memory Hierarchies
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AMD’s 3D Last Level Cache (2021)
AMD increases the L3 size of their 8-core Zen 3
ccp processors from 32 MB to 96 MB

Additional 64 MB L3 cache die

stacked on top of the processor die
- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache

Structural silicon

64MB L3 cache die

Direct copper-to-copper bond

Through Silicon Vias (TSVs) for
silicon-to-silicon communication

Up to 8-core “Zen 3" CCD o

https://youtu.be/ggAYMx34euU 15

https://www.tech-critter.com/amd-keynote-computex-2021/



https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2

Deeper and Larger Memory Hierarchies
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Deeper and Larger Memory Hierarchies

Apple M1 Ultra System (2022)

SA FA Ri https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php




Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand® Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun’  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*’
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
SAFARI 18


https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/
https://www.asplos2018.org/

Data Movement Overwhelms Accelerators

Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira,
Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

'Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine
Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation
Technigues (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]

[Talk Video (14 minutes)]

> 90% of the total system energy
Is spent on memory in large ML models

Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand ™ Saugata Ghose* Berkin Akin® Ravi Narayanaswami®
Geraldo F. Oliveira* Xiaoyu Ma® Eric Shiu® Onur Mutlu*"

T Carnegie Mellon Univ. °Stanford Uniyv. *Univ. of Illinois Urbana-Champaign YGoogle *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21.pdf
http://pactconf.org/
http://pactconf.org/
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Google-neural-networks-for-edge-devices-Mensa-Framework_pact21-talk.pdf
https://www.youtube.com/watch?v=A5gxjDbLRAs&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=178

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 20



The Problem

Processing of data
is performed
far away from the data

SAFARI
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Today’s Computing Systems

= Processor centric

= All data processed in the processor - at great system cost

Computing System

"SR
Computing E a Communication E 3 Memory/Storage
Unit Unit Unit
\_ J e
Memory System Storage System
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I expect that over the coming decade memory subsys-
i e t tem design will be the only important design issue for micro-
processors.

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Pertormance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction Windows
for Out-of-order Processors"”
Proceedings of the 9th International Symposium on High-Performance Computer
Architecture (HPCA ), pages 129-140, Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.
HPCA Test of Time Award (awarded in 2021).

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark ¥ Chris Wilkerson £ Yale N. Patt §

§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound [ Back-end bound

I Bad speculation
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Kanev+, "“Profiling a Warehouse-Scale Computer,” ISCA 2015.
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The Performance Perspective (Today)

All of Google’s Data Center Workloads (2015):

adsF T T T - — 1 — ! ) —_ _ T, ]
bigtable| | o — -
disk |- -1 i
flight-search |- Fo— puj - - =
gmail |- e I .
gmail-fe |- - % 1} 4 .
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indexing2} — T & 7
searchl} VT — 4
search2t & - - =1 .
search3} W -
video - | R : | E— | i

0 10 20 30 40 50 60 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
26
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Perils ot Processor-Centric Design

Grossly-imbalanced systems

a Processing done only in one place

o All else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex

27



Data Movement vs. Computation Energy

mEnergy (pJ) ==ADD (int) Relative Cost
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SAFARI Han+, “EIE: Efficient Inference Engine on Compressed Deep Neural Network,” ISCA 2016. 28



Data Movement vs. Computation Energy

10000 mEnergy (pJ) ==ADD (int) Relative Cost 6400X
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We Do Not Want to Move Data!

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP
20pJ ;

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




We Need A Paradigm Shift To ...

Enable computation with minimal data movement

Compute where it makes sense (where data resides)

Make computing architectures more data-centric

31



Axiom

An Intelligent Architecture
Handles Data Well

SAFARI



How to Handle Data Well

Ensure data does not overwhelm the components
o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI 33



Corollaries: Computing Systems Today ...

= Are processor-centric vs. data-centric

= Make designer-dictated decisions vs. data-driven

= Make component-based myopic decisions vs. data-aware

SAFARI 4



Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

SAFARI
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A Blueprint for Fundamentally Better Architectures

= Onur Mutluy,

'Intelligent Architectures for Intelligent Computing Systems"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Virtual, February 2021.

Slides (pptx) (pdf)]

[IEDM Tutorial Slides (pptx) (pdf)]

[Short DATE Talk Video (11 minutes)]

Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich

omutlu@gmail.com

SAFARI 3


https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-computingsystems-invited_paper_DATE21.pdf
http://www.date-conference.com/
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DATE-InvitedTalk-IntelligentArchitecturesForIntelligentComputingSystems-January-22-2021.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=eAZZGDlsDAY
https://www.youtube.com/watch?v=H3sEaINPBOE

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI
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Data-Centric (Memory-Centric)
Architectures

38




Data-Centric Architectures: Properties

Process data where it resides (where it makes sense)

o Processing in and near memory structures

Low-latency and low-energy data access
o Low latency memory
o Low energy memory

Low-cost data storage and processing
o High capacity memory at low cost: hybrid memory, compression

Intelligent data management
o Intelligent controllers handling robustness, security, cost, perf.

SAFARI 5



Processing Data
Where It Makes Sense




Process Data Where It Makes Sense

Sensors

Apple M1 Ultra System (2022)

SA FA Ri https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php




We Need to Think Ditferently
from the Past Approaches




Mindset: Memory as an Accelerator

mini-CPU
core

CPU CPU
core core
CPU CPU
core core

video
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core

imagingl

: GPU GPU E
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:| core core |:
GPU GPU :
|(throughput)| |throughput)] :
core core :

LLC

Nemory Controller

Memory Bus

Memory

Specialized
compute-capability
In_ memory

Memory similar toa 'conventional”accelerator
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Processing in Memory: An Old Idea (I)
Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969

Cellular Logic-in-Memory Arrays

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract—As a direct consequence of large-scale integration,
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of identical elementary net- e sy TYPICAL CELL:
works, or cells. When a small amount of storage is included in each ARRAY: [T T x [ | x
cell, the same array may be regarded either as a logically enhanced H ! I ;

B [
- I
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i
i
]
|
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d
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memory array, or as a logic array whose elementary gates and con-
nections can be “programmed” to realize a desired logical behavior. |
In this paper the specific engineering features of such cellular !
logic-in-memory (CLIM) arrays are discussed, and one such special- wl-
purpose array, a cellular sorting array, is described in detail to illus- T ! .
trate how these features may be achieved in a particular design. It is I
shown how the cellular sorting array can be employed as a single- [:: i - ——'—
address, multiword memory that keeps in order all words stored U TR |
within it. It can also be used as a content-addressed memory, a (% leads return to X-register)
pushdown memory, a buffer memory, and (with a lower logical i
efficiency) a programmable array for the realization of arbitrary CELL EQUATIONS: X = WX+ Wy
switching functions. A second version of a sorting array, operating ;’; weRs Sy = ey
on a different sorting principle, is also described.

¥
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Fig. 1. Cellular sorting array I.
Index Terms—Cellular logic, large-scale integration, logic arrays

logic in memory, push-down memory, sorting, switching functions.

https://doi.org/10.1109/T-C.1969.222754



https://doi.org/10.1109/T-C.1969.222754

Processing in Memory: An Old Idea (1)

Stone, “A Logic-in-Memory Computer,” IEEE TC 1970.

A Logic-in-Memory Computer
HAROLD S. STONE

Abstract—If, as presently projected, the cost of microelectronic
arrays in the future will tend to reflect the number of pins on the
array rather than the number of gates, the logic-in-memory array is
an extremely attractive computer component. Such an array is es-
sentially a microelectronic memory with some combinational logic
associated with each storage element.

SAFAR]| ntips://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone logic in_memory 1970.pdf 45



https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=stone_logic_in_memory_1970.pdf

Processing in Memory: An Old Idea (I11I)

= Patterson et al., “A Case for Intelligent RAM,"” IEEE Micro

1997.

David Patterson
Thomas Anderson
Neal Cardwell
Richard Fromm
Kimberly Keeton
Christoforos Kozyrakis
Randi Thomas
Katherine Yelick

University of California,
Berkeley

A CASE FOR
INTELLIGENT RAM

7 I Ywo trends call into question the cur-
rent practice of fabricating micro-
processors and DRAMs as different

chips on different fabrication lines. The gap
between processor and DRAM speed is
growing at 50% per year; and the size and
organization of memory on a single DRAM
chip is becoming awkward to use, yet size
is growing at 60% per year.

Intelligent RAM, or IRAM, merges pro-
cessing and memory into a single chip to
lower memory latency, increase memory
bandwidth, and improve energy efficiency.
It also allows more flexible selection of
memory size and organization, and promis-
es savings in board area. This article reviews
the state of microprocessors and DRAMs
today, explores some of the opportunities
and challenges for IRAMs, and finally esti-

puter designers can scale the number of
memory chips independently of the number
of processors. Most desktop systems have
one processor and 4 to 32 DRAM chips, but
most server systems have 2 to 16 processors
and 32 to 256 DRAMs. Memory systems have
standardized on single in-line memory mod-
ule (SIMM) or dual in-line memory module
(DIMM) packaging, which allow the end user
to scale the amount of memory in a system.

Quantitative evidence of the industry’s
success is its size: In 1995, DRAMs were a
$37-billion industry, and microprocessors
were a $20-billion industry. In addition to
financial success, the technologies of these
industries have improved at unparalleled
rates. DRAM capacity has quadrupled on
average every three years since 1976, while
microprocessor speed has done the same

SAFARI

https://doi.org/10.1109/40.592312
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https://doi.org/10.1109/40.592312

Why In-Memory Computation Today?

= Huge problems with Memory Technology
o Memory technology scaling is not going well (e.g., RowHammer)
o Many scaling issues demand intelligence in memory

= Huge demand from Applications & Systems
o Data access bottleneck
Energy & power bottlenecks
Data movement energy dominates computation energy
Need all at the same time: performance, energy, sustainability
We can improve all metrics by minimizing data movement

= Designs are squeezed in the middle
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Processing-in-Memory LLandscape Today
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[SK Hynix 2022] [Samsung 2021] [UPMEM 2019]
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Emerging Memories Also Need Intelligent Controllers

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer

Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)

One of the 13 computer architecture papers of 2009 selected as Top
Picks by IEEE Micro. Selected as a CACM Research Highlight.

2022 Persistent Impact Prize.

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Leet Engin Ipeki Onur Mutlu: Doug Burger;

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu
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Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

* Refresh
+ Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
» Leakage current of cell access transistors increasing

<+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
* On-current of the cell access transistor decreasing
+ Bit-line resistance increasing

+ VRT
» Occurring more frequently with cell capacitance decreasing
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Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

+* Refresh
e Nifficuilt ta huild hiadh-asnect ratio cell canacitars decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

/ iosw 8| L= i = V S
| / B T = %
. = |
nqu ' Data . Glo 1 2
1 D» mmug e’&mmc o
— :‘ . |_
T ©
(&)

Plate Do \

Refresh tWR

44002200000
The Me i
Do mory 3/12 @ intel 51




The Takeaway

Intelligent
Memory Controllers
Can Avoid Many Failures
& Enable Better Scaling

SAFARI



Three Key Systems & Application Trends

1. Data access is the major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement
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Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable
(All at the Same Tlme)

SAFARI



Goal: Processing Inside Memory
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Graphs

Results

Many questions ... How do we design the:
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compute-capable memory & controllers?
processors & communication units?
software & hardware interfaces?

system software, compilers, languages?
algorithms & theoretical foundations?
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®®, Juan Gémez-Luna?, Rachata Ausavarungnirun?

SAFARI Research Group

“ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, 2022.

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 20
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https://arxiv.org/pdf/1903.03988.pdf

Processing in Memory:

Two Approaches

1. Processing near Memory
2. Processing using Memory



Two PIM Approaches

5.2. Two Approaches: Processing Using Memory
(PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory
technology innovations that we discuss in Section 5.1
to enable and implement PIM. We find that these works
generally take one of two approaches, which are cat-
egorized in Table 1! (1) processing using memory or
(2) processing near memory. We briefly describe each
approach here. Sections 6 and 7 will provide example
approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to
PIM used by recent works. Adapted from [341] and extended.

Approach Example Enabling Technologies

SRAM
DRAM

Processing Using Memory Phase-change memory (PCM)
Magnetic RAM (MRAM)
Resistive RAM (RRAM)/memristors
Logic layers in 3D-stacked memory
Silicon interposers

Processing Near Memory  Logic in memory controllers
Logic in memory chips (e.g., near bank)
Logic in memory modules
Logic near caches
Logic near/in storage devices

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna,
and Rachata Ausavarungnirun,

"A Modern Primer on Processing in
Memory"

Invited Book Chapter in Emerging
Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann,
Springer, to be published in 2021.

[Tutorial Video on "Memory-Centric Computing
Systems" (1 hour 51 minutes)]

S A FA R l https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM springer-emerging-computing-bookchapter21.pdf 58
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