CSCE 4114/5114
Embedded Systems:
Board Flashing Instructions

Tendayi Kamucheka

Introduction

* To get your application flashed on your board you will need two
things:
* A bootloader application to launch your application once it is stored on the
flash memory

* Your project application

Bootloader: Creating the Application

e Start off by creating a new "Application
Project” in the SDK

 Name the project "Bootloader" or
something along those lines

* Make the OS Platform is "standalone"

* For Board Support Package, you'll want to
create a new package for the Bootloader.

* On the next page:

* Select the "SREC SPI Bootloader" template

* Then click on "Finish" to create the
project

m Mew Project

Application Project

€3 A project with that name already exists in the workspace.

Project name: | Bootloader

Use default location

C\Users\tfkamuch\Desktop\labs\embedded_systems_lab.sd

default

05 Platform: | standalone

Target Hardware

Hardware Platform: | base_soc_wrapper_hw_platform_0 || Newh.,
Processor: microblaze 0
Target Software
Language: @®C OC++
32-bit
Board Support Package: @) Create New | Bootloader_bsp
O Use existing | ArtyBot bsp
@ Cancel

@ Mew Project

Templates

Create one of the available templates to generate a fully-functioning

application project.

Available Templates:

Dhrystone

Empty Application
Helle World

IwIP Echo Server

Memory Tests
Peripheral Tests
SREC Bootloader
SREC 5P| Bootloader

Simple bootloader for loading SREC
images from nen volatile memory (SPI).
This pregram assumes that you ha
SREC image programi

already. The program ssumes tha

the target SREC image is an application

for this processor that does not overlap
rate

physical intl

Typically this application is initialized into
BRAM so that it bootloads the SREC
image when the FPGA is powered up.

Update the serial_flash_family &
serial_flash_interface in xilisf library in BSP
settings!

Don't forget to medify blconfig.h to
reflect the offset where your SREC image
resides in non-velatile memory!

The examples repository has a bootloader ready to go!

Bootloader: Board Support Package

* We need to make a few changes
to the board support package
before the Bootloader is ready:

 Namely, we want to add support for

flash memory

* And change the flash memory
family to match what's on the

board

e Under "Bootloader_bsp":
* Open the "system.mss" file
* Then select "Modify this BSP's

Settings"

il ArtyBot_bsp

5 ArtyBot_exampled

5 ArtyBot_examplel

fHll; ArtyBot_examplel_bsp

(Ml ArtyBot_freertos823_bsp

llg base_soc_wrapper_hw_platform_0
=% Bootloader

v [Hi Bootloader_bsp

i BSP Documentation
i= microblaze_ 0
Malkefile
Ik, System.mss

=% freertos_helloworld

@ freertos_helloworld_bsp

=% hello_world

@ hello_world_bsp

=5 hello_world2

il hello_world2_bsp

@ lab2_GPIO_bsp

% 1ab3b

(s 1ab3b_bsp

=% LightSensor_exampled

=% Motor_exampled

=5 Motor_examplel

=5 Sonar_exampled

The examples repository has a bootloader ready to go!

Bootloader_bsp Board Support Package

| Modify this BSP's Settingsl Re-generate BSP Sources

Target Information

This Board Support Package is compiled to run on the follow

Hardware Specification: Ci\Users\tfkarmucht\Desktop'labs'e
Target Processor: microblaze 0

Operating System

Board Support Package O5.

Mame: standalone
Version: 6.1
Description: Standalone is a simple, low-level software
Documentation: standalone vB 1

Peripheral Drivers

Drivers present in the Board Support Package.

Pmeod_DHE1_0 Pmod_DHI
Pmod_Dual_MAXSOMNAR_D Pmod_Duz
axi_ethernetlite_0 emaclite
axi_gpic_0 gpic
axi_gpic_1 gpic

Bootloader: Board Support Package

* In the Board Support Package Settings
window:

* Enable the "xilisf" option under supported
libraries

* A new "Xxilisf" option should appear on the left
side under "Overview > standalone > xilisf"

* Select the "xilisf" option and modify "serial flash
family" value to 5.

e We're done with the Bootloader's BSP!

The examples repository has a bootloader ready to go!

m Board Support Package Settings

Board Support Package Settings
Control various settings of your Board Support Package.

O
~ S Bootloader_bsp
w standalone
xilisf OSType: standolone

~ drivers 0S Version:

microblaze_ 0

4 Target Hardware

Supported Libraries

navigator on the left.

Hardware Specification: C:\Users\tfkamuch'\Desktop\labs\embedded_systems_lab.sdk\base_soc_wrapper_hw_platform_0*
Processor: microblaze_0

Check the box next to the libraries you want included in your Board Support Package.Vou can configure the library in the

18

Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts and exceptions as well as the basic features of a
hasted enviranment, such as standard input and output, prafiling, abort and exit.

Name Version Description @
[xilflash 42 ZXilinx Flash library for Intel/AMD CFl compliant paral...
xilisf 5.7 Kilinx In-system and Serial Flash Library
[wilmfs 22 ilinx Memory File System
1 xilom 20 Power Manaaement AP| Librarv for ZvnaMP v
@
m Board Support Package Settings X
Board Support Package Settings
Control various settings of your Board Support Package,
~ Overview
+ standalone Configuration for library: xilisf
il Name Value Default Type Descripti
v drivers . i
microblaze 0 serial_flash_family 5 1 integer Indicates
- serial_flash_interface 1 1 integer Indicates

Bootloader: Memory Configuration

I Project Explorer &2 = <===g'>| ¥ = = 8 ||/n blconfigh &
@ % Coovri

{Hl: ArtyBot_bsp Copyright (C) 2004 2015 ¥ilinx, Inc.
= ArtyBot_examplel H fwarning "Pleass provide the correct address

1] 1] . »
* |n the "Bootloader" project, open the & g oenper
1] e n L {H: ArtyBot_freertos823_bs #define FLASH IMAGE BASEADDR 0x00C00000
blconflg. h fl I e . % l;ase}so;_wrapper_hw_zlatform_[:
WD it
S 4 Binaics

* Next, modify S
the "FLASH_IMAGE_BASEADDR" value " 5 st

to "0x00C00000" ~

le| platform.c

* This will be the starting address of your 2 ot

project in the flash memory k)

-f@ ArtyBot_bsp #inclnde "errors.h"

(=5 ArtyBot_examplel #include "srec.h"
i

* Optionally, if you want to see e

(i ArtyBot_freertos823_bsp

1 f* De =5 */
d e b u I nfo I n P utt . (&} base_soc_wrapper_hw_platform_{ #define CR 13
* w [Bootloader
f* Co ollowing line, if you want a sSmaller a
ffwd SE

* Uncomment the "#define VERBOSE" line in e
"bootloader.c" T o

errors.h

* The Bootloader is ready! B o cons)

portab.h H #warning "Set your Device ID here, as defined in xpara
. r s

A Dmntlmmder e

The examples repository has a bootloader ready to go!

Creating Your Project: BSP

e Start by creating your "New Application
Project" for your design:

* You can create a separate board support
package for your application
* Next, make the same changes to your

application's board support package to
support the flash chip

m Board Support Package Settings

Board Support Package Settings

~ Overview

w standalone

~ drivers 0S Version:
microblaze_0

4 Target Hardware

Processor:

Bootloader_bsp

xilisf OSType: standolone

Supported Libraries

navigator on the left.

Control various settings of your Board Support Package.

Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts and exceptions as well as the basic features of a
hasted enviranment, such as standard input and output, prafiling, abort and exit.

Hardware Specification: C:\Users\tfkamuch'\Desktop\labs\embedded_systems_lab.sdk\base_soc_wrapper_hw_platform_0*
microblaze_0

Check the box next to the libraries you want included in your Board Support Package.Vou can configure the library in the

18

Name Version Description @
[xilflash 42 ZXilinx Flash library for Intel/AMD CFl compliant paral...
xilisf 5.7 Kilinx In-system and Serial Flash Library
[wilmfs 22 ilinx Memory File System
1 xilom 20 Power Manaaement AP| Librarv for ZvnaMP v
m Board Support Package Settings X
Board Support Package Settings
Control various settings of your Board Support Package,
~ Overview
+ standalone Configuration for library: xilisf
il Name Value Default Type Descripti
v drivers . i
microblaze 0 serial_flash_family 5 1 integer Indicates
- serial_flash_interface 1 1 integer Indicates

Creating Your Project: Linker Script

I’ Project Explorer &2

{Hl; ArtyBot_bsp
=5 ArtyBot_exampled

S &|¥ = 08

* We want to make sure our compiled
application are run from the DDR3 ram,
so we need to change the linker script

e Start by right-clicking your project's
folder and selecting "Generate Linker
Script”

* On the right side of the generate
window, change all the memory
locations to "mig_7series 0 _memaddr"

* Now, move on to developing your
amazing application

v 5 ArtyBot_examplel

s Includes
== Debug

v [src

le| artyBotlib.c

|h| artyBotlLib.h
g main.c

] moterControl.c
lh| moterControlh
lg] pidCentroller.c
|h| pidController.h

el Iscript.id

Generate linker script

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Set generated script on all project build configurations

aaaaaaaaaaaaaaaa

MMMMM

DDD

CCCCCC

SPI Flashing: Generating Bitstream

B8 pragram FPGA X

* First, we generate a bitstream that %
Wel” |ater use tO flash the SPI Specify the bitstream and the ELF files that reside in BRAM memery

Hardware Configuration

m e m O ry Hardware Platform: | base_soc_wrapper_hw_platform_0 -
L]

Connec tion: Local ~ Mew
1 11 ‘12 e
* Open the "Program FPGA" utility e i -
Bitstream: |base_soc_wrapper.bit |Search... Browse..

[Partial Bitstream

* Then chan ge the "E LF/ MEM File to M Fle [o e = =
Initialize Block RAM" option to L [e e
! BOOtloader, e/.f" e AUsersitfkamuch\Desktophlabs\embedded_systems lab.sdk\Bootloader\DebugiBootloader.e

* Refer to example image for path to
elf file

* Now, click "Program”

SPI Flashing: Your project

* Now let's get your project on the

board =

Program Flash Memory

i O p en t h e " Progra m F I a Sh M e mory" Program Flash Memory via In-system Programmer.

utility Ha

* Set the "Image File" to your project's . =
compiled elf file
. Set the "Offset" to "0x00C00000" . e

* For flash type, refer to example image

rdware Platform: |base_soc

_wrapper_hw_platform_0

X

L

w Mew

| Select...

| ChUsers\tfkamuch'Desktoptlabs\embedded_systems_lab.sdk\ArtyBot_examplel\Debug\ArtyBot_examplel.elf | Browse

e Check all the checkboxesin the bottom | @wsere

section

@

x0-spi-x1_x2 _xd

Convert ELF to bootloadable SREC format and program
Blank check after eraze

* Now, click "Program" to begin flashing
the board

SPI Flashing: Bootloader

e Almost there! Now we need to flash
Bootloader

* Open the "Program Flash Memory"
utility again

* This time, change "Image File" to

"base soc_wrapper_hw_platform 0\d

ownload.bit"
* Set the "Offset" to "0x0"
* Finally, click "Program"

* We're done! Your bot should be ready
to drive solo.

50 X
Program Flash Memory

Program Flash Memory via In-system Programmer,
Hardware Platform: | base_soc_wrapper_hw_platform_0 w
Connec tion: Local ~ New
Device: | Auto Detect | Select...
Image File: | Ci\Users\tfkamuch'\Desktophlabs\embedded_systems_lab.sdk\base_soc_wrapper_hw_platform_0\downlead.bit | Browse
Offset: | 0«0} |
Flash Type 525f11 28macoooD-spi-n]_x2 x4 ~

Convert ELF to bootloadable SREC format and program
Blank check after erase
[] Verify after flash

'::?:' Program Cancel

